Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO π, AGPL-3.0 license | |
| import math | |
| import random | |
| from copy import deepcopy | |
| from typing import Tuple, Union | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from ultralytics.data.utils import polygons2masks, polygons2masks_overlap | |
| from ultralytics.utils import LOGGER, colorstr | |
| from ultralytics.utils.checks import check_version | |
| from ultralytics.utils.instance import Instances | |
| from ultralytics.utils.metrics import bbox_ioa | |
| from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr | |
| from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13 | |
| DEFAULT_MEAN = (0.0, 0.0, 0.0) | |
| DEFAULT_STD = (1.0, 1.0, 1.0) | |
| DEFAULT_CROP_FRACTION = 1.0 | |
| # TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic | |
| class BaseTransform: | |
| """ | |
| Base class for image transformations. | |
| This is a generic transformation class that can be extended for specific image processing needs. | |
| The class is designed to be compatible with both classification and semantic segmentation tasks. | |
| Methods: | |
| __init__: Initializes the BaseTransform object. | |
| apply_image: Applies image transformation to labels. | |
| apply_instances: Applies transformations to object instances in labels. | |
| apply_semantic: Applies semantic segmentation to an image. | |
| __call__: Applies all label transformations to an image, instances, and semantic masks. | |
| """ | |
| def __init__(self) -> None: | |
| """Initializes the BaseTransform object.""" | |
| pass | |
| def apply_image(self, labels): | |
| """Applies image transformations to labels.""" | |
| pass | |
| def apply_instances(self, labels): | |
| """Applies transformations to object instances in labels.""" | |
| pass | |
| def apply_semantic(self, labels): | |
| """Applies semantic segmentation to an image.""" | |
| pass | |
| def __call__(self, labels): | |
| """Applies all label transformations to an image, instances, and semantic masks.""" | |
| self.apply_image(labels) | |
| self.apply_instances(labels) | |
| self.apply_semantic(labels) | |
| class Compose: | |
| """Class for composing multiple image transformations.""" | |
| def __init__(self, transforms): | |
| """Initializes the Compose object with a list of transforms.""" | |
| self.transforms = transforms if isinstance(transforms, list) else [transforms] | |
| def __call__(self, data): | |
| """Applies a series of transformations to input data.""" | |
| for t in self.transforms: | |
| data = t(data) | |
| return data | |
| def append(self, transform): | |
| """Appends a new transform to the existing list of transforms.""" | |
| self.transforms.append(transform) | |
| def insert(self, index, transform): | |
| """Inserts a new transform to the existing list of transforms.""" | |
| self.transforms.insert(index, transform) | |
| def __getitem__(self, index: Union[list, int]) -> "Compose": | |
| """Retrieve a specific transform or a set of transforms using indexing.""" | |
| assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}" | |
| index = [index] if isinstance(index, int) else index | |
| return Compose([self.transforms[i] for i in index]) | |
| def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None: | |
| """Retrieve a specific transform or a set of transforms using indexing.""" | |
| assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}" | |
| if isinstance(index, list): | |
| assert isinstance( | |
| value, list | |
| ), f"The indices should be the same type as values, but got {type(index)} and {type(value)}" | |
| if isinstance(index, int): | |
| index, value = [index], [value] | |
| for i, v in zip(index, value): | |
| assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}." | |
| self.transforms[i] = v | |
| def tolist(self): | |
| """Converts the list of transforms to a standard Python list.""" | |
| return self.transforms | |
| def __repr__(self): | |
| """Returns a string representation of the object.""" | |
| return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})" | |
| class BaseMixTransform: | |
| """ | |
| Class for base mix (MixUp/Mosaic) transformations. | |
| This implementation is from mmyolo. | |
| """ | |
| def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
| """Initializes the BaseMixTransform object with dataset, pre_transform, and probability.""" | |
| self.dataset = dataset | |
| self.pre_transform = pre_transform | |
| self.p = p | |
| def __call__(self, labels): | |
| """Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" | |
| if random.uniform(0, 1) > self.p: | |
| return labels | |
| # Get index of one or three other images | |
| indexes = self.get_indexes() | |
| if isinstance(indexes, int): | |
| indexes = [indexes] | |
| # Get images information will be used for Mosaic or MixUp | |
| mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] | |
| if self.pre_transform is not None: | |
| for i, data in enumerate(mix_labels): | |
| mix_labels[i] = self.pre_transform(data) | |
| labels["mix_labels"] = mix_labels | |
| # Update cls and texts | |
| labels = self._update_label_text(labels) | |
| # Mosaic or MixUp | |
| labels = self._mix_transform(labels) | |
| labels.pop("mix_labels", None) | |
| return labels | |
| def _mix_transform(self, labels): | |
| """Applies MixUp or Mosaic augmentation to the label dictionary.""" | |
| raise NotImplementedError | |
| def get_indexes(self): | |
| """Gets a list of shuffled indexes for mosaic augmentation.""" | |
| raise NotImplementedError | |
| def _update_label_text(self, labels): | |
| """Update label text.""" | |
| if "texts" not in labels: | |
| return labels | |
| mix_texts = sum([labels["texts"]] + [x["texts"] for x in labels["mix_labels"]], []) | |
| mix_texts = list({tuple(x) for x in mix_texts}) | |
| text2id = {text: i for i, text in enumerate(mix_texts)} | |
| for label in [labels] + labels["mix_labels"]: | |
| for i, cls in enumerate(label["cls"].squeeze(-1).tolist()): | |
| text = label["texts"][int(cls)] | |
| label["cls"][i] = text2id[tuple(text)] | |
| label["texts"] = mix_texts | |
| return labels | |
| class Mosaic(BaseMixTransform): | |
| """ | |
| Mosaic augmentation. | |
| This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. | |
| The augmentation is applied to a dataset with a given probability. | |
| Attributes: | |
| dataset: The dataset on which the mosaic augmentation is applied. | |
| imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. | |
| p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. | |
| n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). | |
| """ | |
| def __init__(self, dataset, imgsz=640, p=1.0, n=4): | |
| """Initializes the object with a dataset, image size, probability, and border.""" | |
| assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}." | |
| assert n in {4, 9}, "grid must be equal to 4 or 9." | |
| super().__init__(dataset=dataset, p=p) | |
| self.dataset = dataset | |
| self.imgsz = imgsz | |
| self.border = (-imgsz // 2, -imgsz // 2) # width, height | |
| self.n = n | |
| def get_indexes(self, buffer=True): | |
| """Return a list of random indexes from the dataset.""" | |
| if buffer: # select images from buffer | |
| return random.choices(list(self.dataset.buffer), k=self.n - 1) | |
| else: # select any images | |
| return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] | |
| def _mix_transform(self, labels): | |
| """Apply mixup transformation to the input image and labels.""" | |
| assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive." | |
| assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment." | |
| return ( | |
| self._mosaic3(labels) if self.n == 3 else self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) | |
| ) # This code is modified for mosaic3 method. | |
| def _mosaic3(self, labels): | |
| """Create a 1x3 image mosaic.""" | |
| mosaic_labels = [] | |
| s = self.imgsz | |
| for i in range(3): | |
| labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
| # Load image | |
| img = labels_patch["img"] | |
| h, w = labels_patch.pop("resized_shape") | |
| # Place img in img3 | |
| if i == 0: # center | |
| img3 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 3 tiles | |
| h0, w0 = h, w | |
| c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
| elif i == 1: # right | |
| c = s + w0, s, s + w0 + w, s + h | |
| elif i == 2: # left | |
| c = s - w, s + h0 - h, s, s + h0 | |
| padw, padh = c[:2] | |
| x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords | |
| img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax] | |
| # hp, wp = h, w # height, width previous for next iteration | |
| # Labels assuming imgsz*2 mosaic size | |
| labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
| mosaic_labels.append(labels_patch) | |
| final_labels = self._cat_labels(mosaic_labels) | |
| final_labels["img"] = img3[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
| return final_labels | |
| def _mosaic4(self, labels): | |
| """Create a 2x2 image mosaic.""" | |
| mosaic_labels = [] | |
| s = self.imgsz | |
| yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y | |
| for i in range(4): | |
| labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
| # Load image | |
| img = labels_patch["img"] | |
| h, w = labels_patch.pop("resized_shape") | |
| # Place img in img4 | |
| if i == 0: # top left | |
| img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
| x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
| x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
| elif i == 1: # top right | |
| x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
| x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
| elif i == 2: # bottom left | |
| x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
| x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
| elif i == 3: # bottom right | |
| x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
| x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
| img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
| padw = x1a - x1b | |
| padh = y1a - y1b | |
| labels_patch = self._update_labels(labels_patch, padw, padh) | |
| mosaic_labels.append(labels_patch) | |
| final_labels = self._cat_labels(mosaic_labels) | |
| final_labels["img"] = img4 | |
| return final_labels | |
| def _mosaic9(self, labels): | |
| """Create a 3x3 image mosaic.""" | |
| mosaic_labels = [] | |
| s = self.imgsz | |
| hp, wp = -1, -1 # height, width previous | |
| for i in range(9): | |
| labels_patch = labels if i == 0 else labels["mix_labels"][i - 1] | |
| # Load image | |
| img = labels_patch["img"] | |
| h, w = labels_patch.pop("resized_shape") | |
| # Place img in img9 | |
| if i == 0: # center | |
| img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
| h0, w0 = h, w | |
| c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
| elif i == 1: # top | |
| c = s, s - h, s + w, s | |
| elif i == 2: # top right | |
| c = s + wp, s - h, s + wp + w, s | |
| elif i == 3: # right | |
| c = s + w0, s, s + w0 + w, s + h | |
| elif i == 4: # bottom right | |
| c = s + w0, s + hp, s + w0 + w, s + hp + h | |
| elif i == 5: # bottom | |
| c = s + w0 - w, s + h0, s + w0, s + h0 + h | |
| elif i == 6: # bottom left | |
| c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h | |
| elif i == 7: # left | |
| c = s - w, s + h0 - h, s, s + h0 | |
| elif i == 8: # top left | |
| c = s - w, s + h0 - hp - h, s, s + h0 - hp | |
| padw, padh = c[:2] | |
| x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords | |
| # Image | |
| img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax] | |
| hp, wp = h, w # height, width previous for next iteration | |
| # Labels assuming imgsz*2 mosaic size | |
| labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
| mosaic_labels.append(labels_patch) | |
| final_labels = self._cat_labels(mosaic_labels) | |
| final_labels["img"] = img9[-self.border[0] : self.border[0], -self.border[1] : self.border[1]] | |
| return final_labels | |
| def _update_labels(labels, padw, padh): | |
| """Update labels.""" | |
| nh, nw = labels["img"].shape[:2] | |
| labels["instances"].convert_bbox(format="xyxy") | |
| labels["instances"].denormalize(nw, nh) | |
| labels["instances"].add_padding(padw, padh) | |
| return labels | |
| def _cat_labels(self, mosaic_labels): | |
| """Return labels with mosaic border instances clipped.""" | |
| if len(mosaic_labels) == 0: | |
| return {} | |
| cls = [] | |
| instances = [] | |
| imgsz = self.imgsz * 2 # mosaic imgsz | |
| for labels in mosaic_labels: | |
| cls.append(labels["cls"]) | |
| instances.append(labels["instances"]) | |
| # Final labels | |
| final_labels = { | |
| "im_file": mosaic_labels[0]["im_file"], | |
| "ori_shape": mosaic_labels[0]["ori_shape"], | |
| "resized_shape": (imgsz, imgsz), | |
| "cls": np.concatenate(cls, 0), | |
| "instances": Instances.concatenate(instances, axis=0), | |
| "mosaic_border": self.border, | |
| } | |
| final_labels["instances"].clip(imgsz, imgsz) | |
| good = final_labels["instances"].remove_zero_area_boxes() | |
| final_labels["cls"] = final_labels["cls"][good] | |
| if "texts" in mosaic_labels[0]: | |
| final_labels["texts"] = mosaic_labels[0]["texts"] | |
| return final_labels | |
| class MixUp(BaseMixTransform): | |
| """Class for applying MixUp augmentation to the dataset.""" | |
| def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
| """Initializes MixUp object with dataset, pre_transform, and probability of applying MixUp.""" | |
| super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) | |
| def get_indexes(self): | |
| """Get a random index from the dataset.""" | |
| return random.randint(0, len(self.dataset) - 1) | |
| def _mix_transform(self, labels): | |
| """Applies MixUp augmentation as per https://arxiv.org/pdf/1710.09412.pdf.""" | |
| r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 | |
| labels2 = labels["mix_labels"][0] | |
| labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8) | |
| labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0) | |
| labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0) | |
| return labels | |
| class RandomPerspective: | |
| """ | |
| Implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and | |
| keypoints. These transformations include rotation, translation, scaling, and shearing. The class also offers the | |
| option to apply these transformations conditionally with a specified probability. | |
| Attributes: | |
| degrees (float): Degree range for random rotations. | |
| translate (float): Fraction of total width and height for random translation. | |
| scale (float): Scaling factor interval, e.g., a scale factor of 0.1 allows a resize between 90%-110%. | |
| shear (float): Shear intensity (angle in degrees). | |
| perspective (float): Perspective distortion factor. | |
| border (tuple): Tuple specifying mosaic border. | |
| pre_transform (callable): A function/transform to apply to the image before starting the random transformation. | |
| Methods: | |
| affine_transform(img, border): Applies a series of affine transformations to the image. | |
| apply_bboxes(bboxes, M): Transforms bounding boxes using the calculated affine matrix. | |
| apply_segments(segments, M): Transforms segments and generates new bounding boxes. | |
| apply_keypoints(keypoints, M): Transforms keypoints. | |
| __call__(labels): Main method to apply transformations to both images and their corresponding annotations. | |
| box_candidates(box1, box2): Filters out bounding boxes that don't meet certain criteria post-transformation. | |
| """ | |
| def __init__( | |
| self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None | |
| ): | |
| """Initializes RandomPerspective object with transformation parameters.""" | |
| self.degrees = degrees | |
| self.translate = translate | |
| self.scale = scale | |
| self.shear = shear | |
| self.perspective = perspective | |
| self.border = border # mosaic border | |
| self.pre_transform = pre_transform | |
| def affine_transform(self, img, border): | |
| """ | |
| Applies a sequence of affine transformations centered around the image center. | |
| Args: | |
| img (ndarray): Input image. | |
| border (tuple): Border dimensions. | |
| Returns: | |
| img (ndarray): Transformed image. | |
| M (ndarray): Transformation matrix. | |
| s (float): Scale factor. | |
| """ | |
| # Center | |
| C = np.eye(3, dtype=np.float32) | |
| C[0, 2] = -img.shape[1] / 2 # x translation (pixels) | |
| C[1, 2] = -img.shape[0] / 2 # y translation (pixels) | |
| # Perspective | |
| P = np.eye(3, dtype=np.float32) | |
| P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) | |
| P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) | |
| # Rotation and Scale | |
| R = np.eye(3, dtype=np.float32) | |
| a = random.uniform(-self.degrees, self.degrees) | |
| # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
| s = random.uniform(1 - self.scale, 1 + self.scale) | |
| # s = 2 ** random.uniform(-scale, scale) | |
| R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
| # Shear | |
| S = np.eye(3, dtype=np.float32) | |
| S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) | |
| S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) | |
| # Translation | |
| T = np.eye(3, dtype=np.float32) | |
| T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) | |
| T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) | |
| # Combined rotation matrix | |
| M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
| # Affine image | |
| if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed | |
| if self.perspective: | |
| img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) | |
| else: # affine | |
| img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) | |
| return img, M, s | |
| def apply_bboxes(self, bboxes, M): | |
| """ | |
| Apply affine to bboxes only. | |
| Args: | |
| bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). | |
| M (ndarray): affine matrix. | |
| Returns: | |
| new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. | |
| """ | |
| n = len(bboxes) | |
| if n == 0: | |
| return bboxes | |
| xy = np.ones((n * 4, 3), dtype=bboxes.dtype) | |
| xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
| xy = xy @ M.T # transform | |
| xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine | |
| # Create new boxes | |
| x = xy[:, [0, 2, 4, 6]] | |
| y = xy[:, [1, 3, 5, 7]] | |
| return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T | |
| def apply_segments(self, segments, M): | |
| """ | |
| Apply affine to segments and generate new bboxes from segments. | |
| Args: | |
| segments (ndarray): list of segments, [num_samples, 500, 2]. | |
| M (ndarray): affine matrix. | |
| Returns: | |
| new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. | |
| new_bboxes (ndarray): bboxes after affine, [N, 4]. | |
| """ | |
| n, num = segments.shape[:2] | |
| if n == 0: | |
| return [], segments | |
| xy = np.ones((n * num, 3), dtype=segments.dtype) | |
| segments = segments.reshape(-1, 2) | |
| xy[:, :2] = segments | |
| xy = xy @ M.T # transform | |
| xy = xy[:, :2] / xy[:, 2:3] | |
| segments = xy.reshape(n, -1, 2) | |
| bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) | |
| segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3]) | |
| segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4]) | |
| return bboxes, segments | |
| def apply_keypoints(self, keypoints, M): | |
| """ | |
| Apply affine to keypoints. | |
| Args: | |
| keypoints (ndarray): keypoints, [N, 17, 3]. | |
| M (ndarray): affine matrix. | |
| Returns: | |
| new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. | |
| """ | |
| n, nkpt = keypoints.shape[:2] | |
| if n == 0: | |
| return keypoints | |
| xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) | |
| visible = keypoints[..., 2].reshape(n * nkpt, 1) | |
| xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) | |
| xy = xy @ M.T # transform | |
| xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine | |
| out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) | |
| visible[out_mask] = 0 | |
| return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) | |
| def __call__(self, labels): | |
| """ | |
| Affine images and targets. | |
| Args: | |
| labels (dict): a dict of `bboxes`, `segments`, `keypoints`. | |
| """ | |
| if self.pre_transform and "mosaic_border" not in labels: | |
| labels = self.pre_transform(labels) | |
| labels.pop("ratio_pad", None) # do not need ratio pad | |
| img = labels["img"] | |
| cls = labels["cls"] | |
| instances = labels.pop("instances") | |
| # Make sure the coord formats are right | |
| instances.convert_bbox(format="xyxy") | |
| instances.denormalize(*img.shape[:2][::-1]) | |
| border = labels.pop("mosaic_border", self.border) | |
| self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h | |
| # M is affine matrix | |
| # Scale for func:`box_candidates` | |
| img, M, scale = self.affine_transform(img, border) | |
| bboxes = self.apply_bboxes(instances.bboxes, M) | |
| segments = instances.segments | |
| keypoints = instances.keypoints | |
| # Update bboxes if there are segments. | |
| if len(segments): | |
| bboxes, segments = self.apply_segments(segments, M) | |
| if keypoints is not None: | |
| keypoints = self.apply_keypoints(keypoints, M) | |
| new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False) | |
| # Clip | |
| new_instances.clip(*self.size) | |
| # Filter instances | |
| instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) | |
| # Make the bboxes have the same scale with new_bboxes | |
| i = self.box_candidates( | |
| box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10 | |
| ) | |
| labels["instances"] = new_instances[i] | |
| labels["cls"] = cls[i] | |
| labels["img"] = img | |
| labels["resized_shape"] = img.shape[:2] | |
| return labels | |
| def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): | |
| """ | |
| Compute box candidates based on a set of thresholds. This method compares the characteristics of the boxes | |
| before and after augmentation to decide whether a box is a candidate for further processing. | |
| Args: | |
| box1 (numpy.ndarray): The 4,n bounding box before augmentation, represented as [x1, y1, x2, y2]. | |
| box2 (numpy.ndarray): The 4,n bounding box after augmentation, represented as [x1, y1, x2, y2]. | |
| wh_thr (float, optional): The width and height threshold in pixels. Default is 2. | |
| ar_thr (float, optional): The aspect ratio threshold. Default is 100. | |
| area_thr (float, optional): The area ratio threshold. Default is 0.1. | |
| eps (float, optional): A small epsilon value to prevent division by zero. Default is 1e-16. | |
| Returns: | |
| (numpy.ndarray): A boolean array indicating which boxes are candidates based on the given thresholds. | |
| """ | |
| w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
| w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
| ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
| return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates | |
| class RandomHSV: | |
| """ | |
| This class is responsible for performing random adjustments to the Hue, Saturation, and Value (HSV) channels of an | |
| image. | |
| The adjustments are random but within limits set by hgain, sgain, and vgain. | |
| """ | |
| def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: | |
| """ | |
| Initialize RandomHSV class with gains for each HSV channel. | |
| Args: | |
| hgain (float, optional): Maximum variation for hue. Default is 0.5. | |
| sgain (float, optional): Maximum variation for saturation. Default is 0.5. | |
| vgain (float, optional): Maximum variation for value. Default is 0.5. | |
| """ | |
| self.hgain = hgain | |
| self.sgain = sgain | |
| self.vgain = vgain | |
| def __call__(self, labels): | |
| """ | |
| Applies random HSV augmentation to an image within the predefined limits. | |
| The modified image replaces the original image in the input 'labels' dict. | |
| """ | |
| img = labels["img"] | |
| if self.hgain or self.sgain or self.vgain: | |
| r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains | |
| hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) | |
| dtype = img.dtype # uint8 | |
| x = np.arange(0, 256, dtype=r.dtype) | |
| lut_hue = ((x * r[0]) % 180).astype(dtype) | |
| lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
| lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
| im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) | |
| cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |
| return labels | |
| class RandomFlip: | |
| """ | |
| Applies a random horizontal or vertical flip to an image with a given probability. | |
| Also updates any instances (bounding boxes, keypoints, etc.) accordingly. | |
| """ | |
| def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None: | |
| """ | |
| Initializes the RandomFlip class with probability and direction. | |
| Args: | |
| p (float, optional): The probability of applying the flip. Must be between 0 and 1. Default is 0.5. | |
| direction (str, optional): The direction to apply the flip. Must be 'horizontal' or 'vertical'. | |
| Default is 'horizontal'. | |
| flip_idx (array-like, optional): Index mapping for flipping keypoints, if any. | |
| """ | |
| assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}" | |
| assert 0 <= p <= 1.0 | |
| self.p = p | |
| self.direction = direction | |
| self.flip_idx = flip_idx | |
| def __call__(self, labels): | |
| """ | |
| Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly. | |
| Args: | |
| labels (dict): A dictionary containing the keys 'img' and 'instances'. 'img' is the image to be flipped. | |
| 'instances' is an object containing bounding boxes and optionally keypoints. | |
| Returns: | |
| (dict): The same dict with the flipped image and updated instances under the 'img' and 'instances' keys. | |
| """ | |
| img = labels["img"] | |
| instances = labels.pop("instances") | |
| instances.convert_bbox(format="xywh") | |
| h, w = img.shape[:2] | |
| h = 1 if instances.normalized else h | |
| w = 1 if instances.normalized else w | |
| # Flip up-down | |
| if self.direction == "vertical" and random.random() < self.p: | |
| img = np.flipud(img) | |
| instances.flipud(h) | |
| if self.direction == "horizontal" and random.random() < self.p: | |
| img = np.fliplr(img) | |
| instances.fliplr(w) | |
| # For keypoints | |
| if self.flip_idx is not None and instances.keypoints is not None: | |
| instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) | |
| labels["img"] = np.ascontiguousarray(img) | |
| labels["instances"] = instances | |
| return labels | |
| class LetterBox: | |
| """Resize image and padding for detection, instance segmentation, pose.""" | |
| def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): | |
| """Initialize LetterBox object with specific parameters.""" | |
| self.new_shape = new_shape | |
| self.auto = auto | |
| self.scaleFill = scaleFill | |
| self.scaleup = scaleup | |
| self.stride = stride | |
| self.center = center # Put the image in the middle or top-left | |
| def __call__(self, labels=None, image=None): | |
| """Return updated labels and image with added border.""" | |
| if labels is None: | |
| labels = {} | |
| img = labels.get("img") if image is None else image | |
| shape = img.shape[:2] # current shape [height, width] | |
| new_shape = labels.pop("rect_shape", self.new_shape) | |
| if isinstance(new_shape, int): | |
| new_shape = (new_shape, new_shape) | |
| # Scale ratio (new / old) | |
| r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
| if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
| r = min(r, 1.0) | |
| # Compute padding | |
| ratio = r, r # width, height ratios | |
| new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
| dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
| if self.auto: # minimum rectangle | |
| dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
| elif self.scaleFill: # stretch | |
| dw, dh = 0.0, 0.0 | |
| new_unpad = (new_shape[1], new_shape[0]) | |
| ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
| if self.center: | |
| dw /= 2 # divide padding into 2 sides | |
| dh /= 2 | |
| if shape[::-1] != new_unpad: # resize | |
| img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
| top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) | |
| left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) | |
| img = cv2.copyMakeBorder( | |
| img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | |
| ) # add border | |
| if labels.get("ratio_pad"): | |
| labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation | |
| if len(labels): | |
| labels = self._update_labels(labels, ratio, dw, dh) | |
| labels["img"] = img | |
| labels["resized_shape"] = new_shape | |
| return labels | |
| else: | |
| return img | |
| def _update_labels(self, labels, ratio, padw, padh): | |
| """Update labels.""" | |
| labels["instances"].convert_bbox(format="xyxy") | |
| labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) | |
| labels["instances"].scale(*ratio) | |
| labels["instances"].add_padding(padw, padh) | |
| return labels | |
| class CopyPaste: | |
| """ | |
| Implements the Copy-Paste augmentation as described in the paper https://arxiv.org/abs/2012.07177. This class is | |
| responsible for applying the Copy-Paste augmentation on images and their corresponding instances. | |
| """ | |
| def __init__(self, p=0.5) -> None: | |
| """ | |
| Initializes the CopyPaste class with a given probability. | |
| Args: | |
| p (float, optional): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1. | |
| Default is 0.5. | |
| """ | |
| self.p = p | |
| def __call__(self, labels): | |
| """ | |
| Applies the Copy-Paste augmentation to the given image and instances. | |
| Args: | |
| labels (dict): A dictionary containing: | |
| - 'img': The image to augment. | |
| - 'cls': Class labels associated with the instances. | |
| - 'instances': Object containing bounding boxes, and optionally, keypoints and segments. | |
| Returns: | |
| (dict): Dict with augmented image and updated instances under the 'img', 'cls', and 'instances' keys. | |
| Notes: | |
| 1. Instances are expected to have 'segments' as one of their attributes for this augmentation to work. | |
| 2. This method modifies the input dictionary 'labels' in place. | |
| """ | |
| im = labels["img"] | |
| cls = labels["cls"] | |
| h, w = im.shape[:2] | |
| instances = labels.pop("instances") | |
| instances.convert_bbox(format="xyxy") | |
| instances.denormalize(w, h) | |
| if self.p and len(instances.segments): | |
| n = len(instances) | |
| _, w, _ = im.shape # height, width, channels | |
| im_new = np.zeros(im.shape, np.uint8) | |
| # Calculate ioa first then select indexes randomly | |
| ins_flip = deepcopy(instances) | |
| ins_flip.fliplr(w) | |
| ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) | |
| indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) | |
| n = len(indexes) | |
| for j in random.sample(list(indexes), k=round(self.p * n)): | |
| cls = np.concatenate((cls, cls[[j]]), axis=0) | |
| instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) | |
| cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) | |
| result = cv2.flip(im, 1) # augment segments (flip left-right) | |
| i = cv2.flip(im_new, 1).astype(bool) | |
| im[i] = result[i] | |
| labels["img"] = im | |
| labels["cls"] = cls | |
| labels["instances"] = instances | |
| return labels | |
| class Albumentations: | |
| """ | |
| Albumentations transformations. | |
| Optional, uninstall package to disable. Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive | |
| Histogram Equalization, random change of brightness and contrast, RandomGamma and lowering of image quality by | |
| compression. | |
| """ | |
| def __init__(self, p=1.0): | |
| """Initialize the transform object for YOLO bbox formatted params.""" | |
| self.p = p | |
| self.transform = None | |
| prefix = colorstr("albumentations: ") | |
| try: | |
| import albumentations as A | |
| check_version(A.__version__, "1.0.3", hard=True) # version requirement | |
| # List of possible spatial transforms | |
| spatial_transforms = { | |
| "Affine", | |
| "BBoxSafeRandomCrop", | |
| "CenterCrop", | |
| "CoarseDropout", | |
| "Crop", | |
| "CropAndPad", | |
| "CropNonEmptyMaskIfExists", | |
| "D4", | |
| "ElasticTransform", | |
| "Flip", | |
| "GridDistortion", | |
| "GridDropout", | |
| "HorizontalFlip", | |
| "Lambda", | |
| "LongestMaxSize", | |
| "MaskDropout", | |
| "MixUp", | |
| "Morphological", | |
| "NoOp", | |
| "OpticalDistortion", | |
| "PadIfNeeded", | |
| "Perspective", | |
| "PiecewiseAffine", | |
| "PixelDropout", | |
| "RandomCrop", | |
| "RandomCropFromBorders", | |
| "RandomGridShuffle", | |
| "RandomResizedCrop", | |
| "RandomRotate90", | |
| "RandomScale", | |
| "RandomSizedBBoxSafeCrop", | |
| "RandomSizedCrop", | |
| "Resize", | |
| "Rotate", | |
| "SafeRotate", | |
| "ShiftScaleRotate", | |
| "SmallestMaxSize", | |
| "Transpose", | |
| "VerticalFlip", | |
| "XYMasking", | |
| } # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms | |
| # Transforms | |
| T = [ | |
| A.Blur(p=0.01), | |
| A.MedianBlur(p=0.01), | |
| A.ToGray(p=0.01), | |
| A.CLAHE(p=0.01), | |
| A.RandomBrightnessContrast(p=0.0), | |
| A.RandomGamma(p=0.0), | |
| A.ImageCompression(quality_lower=75, p=0.0), | |
| ] | |
| # Compose transforms | |
| self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T) | |
| self.transform = ( | |
| A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"])) | |
| if self.contains_spatial | |
| else A.Compose(T) | |
| ) | |
| LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p)) | |
| except ImportError: # package not installed, skip | |
| pass | |
| except Exception as e: | |
| LOGGER.info(f"{prefix}{e}") | |
| def __call__(self, labels): | |
| """Generates object detections and returns a dictionary with detection results.""" | |
| if self.transform is None or random.random() > self.p: | |
| return labels | |
| if self.contains_spatial: | |
| cls = labels["cls"] | |
| if len(cls): | |
| im = labels["img"] | |
| labels["instances"].convert_bbox("xywh") | |
| labels["instances"].normalize(*im.shape[:2][::-1]) | |
| bboxes = labels["instances"].bboxes | |
| # TODO: add supports of segments and keypoints | |
| new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed | |
| if len(new["class_labels"]) > 0: # skip update if no bbox in new im | |
| labels["img"] = new["image"] | |
| labels["cls"] = np.array(new["class_labels"]) | |
| bboxes = np.array(new["bboxes"], dtype=np.float32) | |
| labels["instances"].update(bboxes=bboxes) | |
| else: | |
| labels["img"] = self.transform(image=labels["img"])["image"] # transformed | |
| return labels | |
| class Format: | |
| """ | |
| Formats image annotations for object detection, instance segmentation, and pose estimation tasks. The class | |
| standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader. | |
| Attributes: | |
| bbox_format (str): Format for bounding boxes. Default is 'xywh'. | |
| normalize (bool): Whether to normalize bounding boxes. Default is True. | |
| return_mask (bool): Return instance masks for segmentation. Default is False. | |
| return_keypoint (bool): Return keypoints for pose estimation. Default is False. | |
| mask_ratio (int): Downsample ratio for masks. Default is 4. | |
| mask_overlap (bool): Whether to overlap masks. Default is True. | |
| batch_idx (bool): Keep batch indexes. Default is True. | |
| bgr (float): The probability to return BGR images. Default is 0.0. | |
| """ | |
| def __init__( | |
| self, | |
| bbox_format="xywh", | |
| normalize=True, | |
| return_mask=False, | |
| return_keypoint=False, | |
| return_obb=False, | |
| mask_ratio=4, | |
| mask_overlap=True, | |
| batch_idx=True, | |
| bgr=0.0, | |
| ): | |
| """Initializes the Format class with given parameters.""" | |
| self.bbox_format = bbox_format | |
| self.normalize = normalize | |
| self.return_mask = return_mask # set False when training detection only | |
| self.return_keypoint = return_keypoint | |
| self.return_obb = return_obb | |
| self.mask_ratio = mask_ratio | |
| self.mask_overlap = mask_overlap | |
| self.batch_idx = batch_idx # keep the batch indexes | |
| self.bgr = bgr | |
| def __call__(self, labels): | |
| """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" | |
| img = labels.pop("img") | |
| h, w = img.shape[:2] | |
| cls = labels.pop("cls") | |
| instances = labels.pop("instances") | |
| instances.convert_bbox(format=self.bbox_format) | |
| instances.denormalize(w, h) | |
| nl = len(instances) | |
| if self.return_mask: | |
| if nl: | |
| masks, instances, cls = self._format_segments(instances, cls, w, h) | |
| masks = torch.from_numpy(masks) | |
| else: | |
| masks = torch.zeros( | |
| 1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio | |
| ) | |
| labels["masks"] = masks | |
| labels["img"] = self._format_img(img) | |
| labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl) | |
| labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) | |
| if self.return_keypoint: | |
| labels["keypoints"] = torch.from_numpy(instances.keypoints) | |
| if self.normalize: | |
| labels["keypoints"][..., 0] /= w | |
| labels["keypoints"][..., 1] /= h | |
| if self.return_obb: | |
| labels["bboxes"] = ( | |
| xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5)) | |
| ) | |
| # NOTE: need to normalize obb in xywhr format for width-height consistency | |
| if self.normalize: | |
| labels["bboxes"][:, [0, 2]] /= w | |
| labels["bboxes"][:, [1, 3]] /= h | |
| # Then we can use collate_fn | |
| if self.batch_idx: | |
| labels["batch_idx"] = torch.zeros(nl) | |
| return labels | |
| def _format_img(self, img): | |
| """Format the image for YOLO from Numpy array to PyTorch tensor.""" | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| img = img.transpose(2, 0, 1) | |
| img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img) | |
| img = torch.from_numpy(img) | |
| return img | |
| def _format_segments(self, instances, cls, w, h): | |
| """Convert polygon points to bitmap.""" | |
| segments = instances.segments | |
| if self.mask_overlap: | |
| masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) | |
| masks = masks[None] # (640, 640) -> (1, 640, 640) | |
| instances = instances[sorted_idx] | |
| cls = cls[sorted_idx] | |
| else: | |
| masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) | |
| return masks, instances, cls | |
| class RandomLoadText: | |
| """ | |
| Randomly sample positive texts and negative texts and update the class indices accordingly to the number of samples. | |
| Attributes: | |
| prompt_format (str): Format for prompt. Default is '{}'. | |
| neg_samples (tuple[int]): A ranger to randomly sample negative texts, Default is (80, 80). | |
| max_samples (int): The max number of different text samples in one image, Default is 80. | |
| padding (bool): Whether to pad texts to max_samples. Default is False. | |
| padding_value (str): The padding text. Default is "". | |
| """ | |
| def __init__( | |
| self, | |
| prompt_format: str = "{}", | |
| neg_samples: Tuple[int, int] = (80, 80), | |
| max_samples: int = 80, | |
| padding: bool = False, | |
| padding_value: str = "", | |
| ) -> None: | |
| """Initializes the RandomLoadText class with given parameters.""" | |
| self.prompt_format = prompt_format | |
| self.neg_samples = neg_samples | |
| self.max_samples = max_samples | |
| self.padding = padding | |
| self.padding_value = padding_value | |
| def __call__(self, labels: dict) -> dict: | |
| """Return updated classes and texts.""" | |
| assert "texts" in labels, "No texts found in labels." | |
| class_texts = labels["texts"] | |
| num_classes = len(class_texts) | |
| cls = np.asarray(labels.pop("cls"), dtype=int) | |
| pos_labels = np.unique(cls).tolist() | |
| if len(pos_labels) > self.max_samples: | |
| pos_labels = set(random.sample(pos_labels, k=self.max_samples)) | |
| neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples)) | |
| neg_labels = [i for i in range(num_classes) if i not in pos_labels] | |
| neg_labels = random.sample(neg_labels, k=neg_samples) | |
| sampled_labels = pos_labels + neg_labels | |
| random.shuffle(sampled_labels) | |
| label2ids = {label: i for i, label in enumerate(sampled_labels)} | |
| valid_idx = np.zeros(len(labels["instances"]), dtype=bool) | |
| new_cls = [] | |
| for i, label in enumerate(cls.squeeze(-1).tolist()): | |
| if label not in label2ids: | |
| continue | |
| valid_idx[i] = True | |
| new_cls.append([label2ids[label]]) | |
| labels["instances"] = labels["instances"][valid_idx] | |
| labels["cls"] = np.array(new_cls) | |
| # Randomly select one prompt when there's more than one prompts | |
| texts = [] | |
| for label in sampled_labels: | |
| prompts = class_texts[label] | |
| assert len(prompts) > 0 | |
| prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))]) | |
| texts.append(prompt) | |
| if self.padding: | |
| valid_labels = len(pos_labels) + len(neg_labels) | |
| num_padding = self.max_samples - valid_labels | |
| if num_padding > 0: | |
| texts += [self.padding_value] * num_padding | |
| labels["texts"] = texts | |
| return labels | |
| def v8_transforms(dataset, imgsz, hyp, stretch=False): | |
| """Convert images to a size suitable for YOLOv8 training.""" | |
| pre_transform = Compose( | |
| [ | |
| Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), | |
| CopyPaste(p=hyp.copy_paste), | |
| RandomPerspective( | |
| degrees=hyp.degrees, | |
| translate=hyp.translate, | |
| scale=hyp.scale, | |
| shear=hyp.shear, | |
| perspective=hyp.perspective, | |
| pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), | |
| ), | |
| ] | |
| ) | |
| flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation | |
| if dataset.use_keypoints: | |
| kpt_shape = dataset.data.get("kpt_shape", None) | |
| if len(flip_idx) == 0 and hyp.fliplr > 0.0: | |
| hyp.fliplr = 0.0 | |
| LOGGER.warning("WARNING β οΈ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") | |
| elif flip_idx and (len(flip_idx) != kpt_shape[0]): | |
| raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}") | |
| return Compose( | |
| [ | |
| pre_transform, | |
| MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), | |
| Albumentations(p=1.0), | |
| RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), | |
| RandomFlip(direction="vertical", p=hyp.flipud), | |
| RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx), | |
| ] | |
| ) # transforms | |
| # Classification augmentations ----------------------------------------------------------------------------------------- | |
| def classify_transforms( | |
| size=224, | |
| mean=DEFAULT_MEAN, | |
| std=DEFAULT_STD, | |
| interpolation=Image.BILINEAR, | |
| crop_fraction: float = DEFAULT_CROP_FRACTION, | |
| ): | |
| """ | |
| Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py. | |
| Args: | |
| size (int): image size | |
| mean (tuple): mean values of RGB channels | |
| std (tuple): std values of RGB channels | |
| interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. | |
| crop_fraction (float): fraction of image to crop. default is 1.0. | |
| Returns: | |
| (T.Compose): torchvision transforms | |
| """ | |
| import torchvision.transforms as T # scope for faster 'import ultralytics' | |
| if isinstance(size, (tuple, list)): | |
| assert len(size) == 2 | |
| scale_size = tuple(math.floor(x / crop_fraction) for x in size) | |
| else: | |
| scale_size = math.floor(size / crop_fraction) | |
| scale_size = (scale_size, scale_size) | |
| # Aspect ratio is preserved, crops center within image, no borders are added, image is lost | |
| if scale_size[0] == scale_size[1]: | |
| # Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg) | |
| tfl = [T.Resize(scale_size[0], interpolation=interpolation)] | |
| else: | |
| # Resize the shortest edge to matching target dim for non-square target | |
| tfl = [T.Resize(scale_size)] | |
| tfl.extend( | |
| [ | |
| T.CenterCrop(size), | |
| T.ToTensor(), | |
| T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), | |
| ] | |
| ) | |
| return T.Compose(tfl) | |
| # Classification training augmentations -------------------------------------------------------------------------------- | |
| def classify_augmentations( | |
| size=224, | |
| mean=DEFAULT_MEAN, | |
| std=DEFAULT_STD, | |
| scale=None, | |
| ratio=None, | |
| hflip=0.5, | |
| vflip=0.0, | |
| auto_augment=None, | |
| hsv_h=0.015, # image HSV-Hue augmentation (fraction) | |
| hsv_s=0.4, # image HSV-Saturation augmentation (fraction) | |
| hsv_v=0.4, # image HSV-Value augmentation (fraction) | |
| force_color_jitter=False, | |
| erasing=0.0, | |
| interpolation=Image.BILINEAR, | |
| ): | |
| """ | |
| Classification transforms with augmentation for training. Inspired by timm/data/transforms_factory.py. | |
| Args: | |
| size (int): image size | |
| scale (tuple): scale range of the image. default is (0.08, 1.0) | |
| ratio (tuple): aspect ratio range of the image. default is (3./4., 4./3.) | |
| mean (tuple): mean values of RGB channels | |
| std (tuple): std values of RGB channels | |
| hflip (float): probability of horizontal flip | |
| vflip (float): probability of vertical flip | |
| auto_augment (str): auto augmentation policy. can be 'randaugment', 'augmix', 'autoaugment' or None. | |
| hsv_h (float): image HSV-Hue augmentation (fraction) | |
| hsv_s (float): image HSV-Saturation augmentation (fraction) | |
| hsv_v (float): image HSV-Value augmentation (fraction) | |
| force_color_jitter (bool): force to apply color jitter even if auto augment is enabled | |
| erasing (float): probability of random erasing | |
| interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR. | |
| Returns: | |
| (T.Compose): torchvision transforms | |
| """ | |
| # Transforms to apply if Albumentations not installed | |
| import torchvision.transforms as T # scope for faster 'import ultralytics' | |
| if not isinstance(size, int): | |
| raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)") | |
| scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range | |
| ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range | |
| primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)] | |
| if hflip > 0.0: | |
| primary_tfl.append(T.RandomHorizontalFlip(p=hflip)) | |
| if vflip > 0.0: | |
| primary_tfl.append(T.RandomVerticalFlip(p=vflip)) | |
| secondary_tfl = [] | |
| disable_color_jitter = False | |
| if auto_augment: | |
| assert isinstance(auto_augment, str) | |
| # color jitter is typically disabled if AA/RA on, | |
| # this allows override without breaking old hparm cfgs | |
| disable_color_jitter = not force_color_jitter | |
| if auto_augment == "randaugment": | |
| if TORCHVISION_0_11: | |
| secondary_tfl.append(T.RandAugment(interpolation=interpolation)) | |
| else: | |
| LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.') | |
| elif auto_augment == "augmix": | |
| if TORCHVISION_0_13: | |
| secondary_tfl.append(T.AugMix(interpolation=interpolation)) | |
| else: | |
| LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.') | |
| elif auto_augment == "autoaugment": | |
| if TORCHVISION_0_10: | |
| secondary_tfl.append(T.AutoAugment(interpolation=interpolation)) | |
| else: | |
| LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.') | |
| else: | |
| raise ValueError( | |
| f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", ' | |
| f'"augmix", "autoaugment" or None' | |
| ) | |
| if not disable_color_jitter: | |
| secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h)) | |
| final_tfl = [ | |
| T.ToTensor(), | |
| T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), | |
| T.RandomErasing(p=erasing, inplace=True), | |
| ] | |
| return T.Compose(primary_tfl + secondary_tfl + final_tfl) | |
| # NOTE: keep this class for backward compatibility | |
| class ClassifyLetterBox: | |
| """ | |
| YOLOv8 LetterBox class for image preprocessing, designed to be part of a transformation pipeline, e.g., | |
| T.Compose([LetterBox(size), ToTensor()]). | |
| Attributes: | |
| h (int): Target height of the image. | |
| w (int): Target width of the image. | |
| auto (bool): If True, automatically solves for short side using stride. | |
| stride (int): The stride value, used when 'auto' is True. | |
| """ | |
| def __init__(self, size=(640, 640), auto=False, stride=32): | |
| """ | |
| Initializes the ClassifyLetterBox class with a target size, auto-flag, and stride. | |
| Args: | |
| size (Union[int, Tuple[int, int]]): The target dimensions (height, width) for the letterbox. | |
| auto (bool): If True, automatically calculates the short side based on stride. | |
| stride (int): The stride value, used when 'auto' is True. | |
| """ | |
| super().__init__() | |
| self.h, self.w = (size, size) if isinstance(size, int) else size | |
| self.auto = auto # pass max size integer, automatically solve for short side using stride | |
| self.stride = stride # used with auto | |
| def __call__(self, im): | |
| """ | |
| Resizes the image and pads it with a letterbox method. | |
| Args: | |
| im (numpy.ndarray): The input image as a numpy array of shape HWC. | |
| Returns: | |
| (numpy.ndarray): The letterboxed and resized image as a numpy array. | |
| """ | |
| imh, imw = im.shape[:2] | |
| r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions | |
| h, w = round(imh * r), round(imw * r) # resized image dimensions | |
| # Calculate padding dimensions | |
| hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w) | |
| top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) | |
| # Create padded image | |
| im_out = np.full((hs, ws, 3), 114, dtype=im.dtype) | |
| im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) | |
| return im_out | |
| # NOTE: keep this class for backward compatibility | |
| class CenterCrop: | |
| """YOLOv8 CenterCrop class for image preprocessing, designed to be part of a transformation pipeline, e.g., | |
| T.Compose([CenterCrop(size), ToTensor()]). | |
| """ | |
| def __init__(self, size=640): | |
| """Converts an image from numpy array to PyTorch tensor.""" | |
| super().__init__() | |
| self.h, self.w = (size, size) if isinstance(size, int) else size | |
| def __call__(self, im): | |
| """ | |
| Resizes and crops the center of the image using a letterbox method. | |
| Args: | |
| im (numpy.ndarray): The input image as a numpy array of shape HWC. | |
| Returns: | |
| (numpy.ndarray): The center-cropped and resized image as a numpy array. | |
| """ | |
| imh, imw = im.shape[:2] | |
| m = min(imh, imw) # min dimension | |
| top, left = (imh - m) // 2, (imw - m) // 2 | |
| return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) | |
| # NOTE: keep this class for backward compatibility | |
| class ToTensor: | |
| """YOLOv8 ToTensor class for image preprocessing, i.e., T.Compose([LetterBox(size), ToTensor()]).""" | |
| def __init__(self, half=False): | |
| """Initialize YOLOv8 ToTensor object with optional half-precision support.""" | |
| super().__init__() | |
| self.half = half | |
| def __call__(self, im): | |
| """ | |
| Transforms an image from a numpy array to a PyTorch tensor, applying optional half-precision and normalization. | |
| Args: | |
| im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order. | |
| Returns: | |
| (torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1]. | |
| """ | |
| im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous | |
| im = torch.from_numpy(im) # to torch | |
| im = im.half() if self.half else im.float() # uint8 to fp16/32 | |
| im /= 255.0 # 0-255 to 0.0-1.0 | |
| return im | |