Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO π, AGPL-3.0 license | |
| import os | |
| import random | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from torch.utils.data import dataloader, distributed | |
| from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset | |
| from ultralytics.data.loaders import ( | |
| LOADERS, | |
| LoadImagesAndVideos, | |
| LoadPilAndNumpy, | |
| LoadScreenshots, | |
| LoadStreams, | |
| LoadTensor, | |
| SourceTypes, | |
| autocast_list, | |
| ) | |
| from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS | |
| from ultralytics.utils import RANK, colorstr | |
| from ultralytics.utils.checks import check_file | |
| class InfiniteDataLoader(dataloader.DataLoader): | |
| """ | |
| Dataloader that reuses workers. | |
| Uses same syntax as vanilla DataLoader. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| """Dataloader that infinitely recycles workers, inherits from DataLoader.""" | |
| super().__init__(*args, **kwargs) | |
| object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler)) | |
| self.iterator = super().__iter__() | |
| def __len__(self): | |
| """Returns the length of the batch sampler's sampler.""" | |
| return len(self.batch_sampler.sampler) | |
| def __iter__(self): | |
| """Creates a sampler that repeats indefinitely.""" | |
| for _ in range(len(self)): | |
| yield next(self.iterator) | |
| def reset(self): | |
| """ | |
| Reset iterator. | |
| This is useful when we want to modify settings of dataset while training. | |
| """ | |
| self.iterator = self._get_iterator() | |
| class _RepeatSampler: | |
| """ | |
| Sampler that repeats forever. | |
| Args: | |
| sampler (Dataset.sampler): The sampler to repeat. | |
| """ | |
| def __init__(self, sampler): | |
| """Initializes an object that repeats a given sampler indefinitely.""" | |
| self.sampler = sampler | |
| def __iter__(self): | |
| """Iterates over the 'sampler' and yields its contents.""" | |
| while True: | |
| yield from iter(self.sampler) | |
| def seed_worker(worker_id): # noqa | |
| """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader.""" | |
| worker_seed = torch.initial_seed() % 2**32 | |
| np.random.seed(worker_seed) | |
| random.seed(worker_seed) | |
| def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False): | |
| """Build YOLO Dataset.""" | |
| dataset = YOLOMultiModalDataset if multi_modal else YOLODataset | |
| return dataset( | |
| img_path=img_path, | |
| imgsz=cfg.imgsz, | |
| batch_size=batch, | |
| augment=mode == "train", # augmentation | |
| hyp=cfg, # TODO: probably add a get_hyps_from_cfg function | |
| rect=cfg.rect or rect, # rectangular batches | |
| cache=cfg.cache or None, | |
| single_cls=cfg.single_cls or False, | |
| stride=int(stride), | |
| pad=0.0 if mode == "train" else 0.5, | |
| prefix=colorstr(f"{mode}: "), | |
| task=cfg.task, | |
| classes=cfg.classes, | |
| data=data, | |
| fraction=cfg.fraction if mode == "train" else 1.0, | |
| ) | |
| def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32): | |
| """Build YOLO Dataset.""" | |
| return GroundingDataset( | |
| img_path=img_path, | |
| json_file=json_file, | |
| imgsz=cfg.imgsz, | |
| batch_size=batch, | |
| augment=mode == "train", # augmentation | |
| hyp=cfg, # TODO: probably add a get_hyps_from_cfg function | |
| rect=cfg.rect or rect, # rectangular batches | |
| cache=cfg.cache or None, | |
| single_cls=cfg.single_cls or False, | |
| stride=int(stride), | |
| pad=0.0 if mode == "train" else 0.5, | |
| prefix=colorstr(f"{mode}: "), | |
| task=cfg.task, | |
| classes=cfg.classes, | |
| fraction=cfg.fraction if mode == "train" else 1.0, | |
| ) | |
| def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1): | |
| """Return an InfiniteDataLoader or DataLoader for training or validation set.""" | |
| batch = min(batch, len(dataset)) | |
| nd = torch.cuda.device_count() # number of CUDA devices | |
| nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers | |
| sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
| generator = torch.Generator() | |
| generator.manual_seed(6148914691236517205 + RANK) | |
| return InfiniteDataLoader( | |
| dataset=dataset, | |
| batch_size=batch, | |
| shuffle=shuffle and sampler is None, | |
| num_workers=nw, | |
| sampler=sampler, | |
| pin_memory=PIN_MEMORY, | |
| collate_fn=getattr(dataset, "collate_fn", None), | |
| worker_init_fn=seed_worker, | |
| generator=generator, | |
| ) | |
| def check_source(source): | |
| """Check source type and return corresponding flag values.""" | |
| webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False | |
| if isinstance(source, (str, int, Path)): # int for local usb camera | |
| source = str(source) | |
| is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS) | |
| is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")) | |
| webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) | |
| screenshot = source.lower() == "screen" | |
| if is_url and is_file: | |
| source = check_file(source) # download | |
| elif isinstance(source, LOADERS): | |
| in_memory = True | |
| elif isinstance(source, (list, tuple)): | |
| source = autocast_list(source) # convert all list elements to PIL or np arrays | |
| from_img = True | |
| elif isinstance(source, (Image.Image, np.ndarray)): | |
| from_img = True | |
| elif isinstance(source, torch.Tensor): | |
| tensor = True | |
| else: | |
| raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict") | |
| return source, webcam, screenshot, from_img, in_memory, tensor | |
| def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False): | |
| """ | |
| Loads an inference source for object detection and applies necessary transformations. | |
| Args: | |
| source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference. | |
| batch (int, optional): Batch size for dataloaders. Default is 1. | |
| vid_stride (int, optional): The frame interval for video sources. Default is 1. | |
| buffer (bool, optional): Determined whether stream frames will be buffered. Default is False. | |
| Returns: | |
| dataset (Dataset): A dataset object for the specified input source. | |
| """ | |
| source, stream, screenshot, from_img, in_memory, tensor = check_source(source) | |
| source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor) | |
| # Dataloader | |
| if tensor: | |
| dataset = LoadTensor(source) | |
| elif in_memory: | |
| dataset = source | |
| elif stream: | |
| dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer) | |
| elif screenshot: | |
| dataset = LoadScreenshots(source) | |
| elif from_img: | |
| dataset = LoadPilAndNumpy(source) | |
| else: | |
| dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride) | |
| # Attach source types to the dataset | |
| setattr(dataset, "source_type", source_type) | |
| return dataset | |