Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO ๐, AGPL-3.0 license | |
| import inspect | |
| from pathlib import Path | |
| from typing import List, Union | |
| import numpy as np | |
| import torch | |
| from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir | |
| from ultralytics.engine.results import Results | |
| from ultralytics.hub import HUB_WEB_ROOT, HUBTrainingSession | |
| from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load | |
| from ultralytics.utils import ( | |
| ARGV, | |
| ASSETS, | |
| DEFAULT_CFG_DICT, | |
| LOGGER, | |
| RANK, | |
| callbacks, | |
| checks, | |
| emojis, | |
| yaml_load, | |
| ) | |
| class Model(nn.Module): | |
| """ | |
| A base class for implementing YOLO models, unifying APIs across different model types. | |
| This class provides a common interface for various operations related to YOLO models, such as training, | |
| validation, prediction, exporting, and benchmarking. It handles different types of models, including those | |
| loaded from local files, Ultralytics HUB, or Triton Server. The class is designed to be flexible and | |
| extendable for different tasks and model configurations. | |
| Args: | |
| model (Union[str, Path], optional): Path or name of the model to load or create. This can be a local file | |
| path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'. | |
| task (Any, optional): The task type associated with the YOLO model. This can be used to specify the model's | |
| application domain, such as object detection, segmentation, etc. Defaults to None. | |
| verbose (bool, optional): If True, enables verbose output during the model's operations. Defaults to False. | |
| Attributes: | |
| callbacks (dict): A dictionary of callback functions for various events during model operations. | |
| predictor (BasePredictor): The predictor object used for making predictions. | |
| model (nn.Module): The underlying PyTorch model. | |
| trainer (BaseTrainer): The trainer object used for training the model. | |
| ckpt (dict): The checkpoint data if the model is loaded from a *.pt file. | |
| cfg (str): The configuration of the model if loaded from a *.yaml file. | |
| ckpt_path (str): The path to the checkpoint file. | |
| overrides (dict): A dictionary of overrides for model configuration. | |
| metrics (dict): The latest training/validation metrics. | |
| session (HUBTrainingSession): The Ultralytics HUB session, if applicable. | |
| task (str): The type of task the model is intended for. | |
| model_name (str): The name of the model. | |
| Methods: | |
| __call__: Alias for the predict method, enabling the model instance to be callable. | |
| _new: Initializes a new model based on a configuration file. | |
| _load: Loads a model from a checkpoint file. | |
| _check_is_pytorch_model: Ensures that the model is a PyTorch model. | |
| reset_weights: Resets the model's weights to their initial state. | |
| load: Loads model weights from a specified file. | |
| save: Saves the current state of the model to a file. | |
| info: Logs or returns information about the model. | |
| fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference. | |
| predict: Performs object detection predictions. | |
| track: Performs object tracking. | |
| val: Validates the model on a dataset. | |
| benchmark: Benchmarks the model on various export formats. | |
| export: Exports the model to different formats. | |
| train: Trains the model on a dataset. | |
| tune: Performs hyperparameter tuning. | |
| _apply: Applies a function to the model's tensors. | |
| add_callback: Adds a callback function for an event. | |
| clear_callback: Clears all callbacks for an event. | |
| reset_callbacks: Resets all callbacks to their default functions. | |
| is_triton_model: Checks if a model is a Triton Server model. | |
| is_hub_model: Checks if a model is an Ultralytics HUB model. | |
| _reset_ckpt_args: Resets checkpoint arguments when loading a PyTorch model. | |
| _smart_load: Loads the appropriate module based on the model task. | |
| task_map: Provides a mapping from model tasks to corresponding classes. | |
| Raises: | |
| FileNotFoundError: If the specified model file does not exist or is inaccessible. | |
| ValueError: If the model file or configuration is invalid or unsupported. | |
| ImportError: If required dependencies for specific model types (like HUB SDK) are not installed. | |
| TypeError: If the model is not a PyTorch model when required. | |
| AttributeError: If required attributes or methods are not implemented or available. | |
| NotImplementedError: If a specific model task or mode is not supported. | |
| """ | |
| def __init__( | |
| self, | |
| model: Union[str, Path] = "yolov8n.pt", | |
| task: str = None, | |
| verbose: bool = False, | |
| ) -> None: | |
| """ | |
| Initializes a new instance of the YOLO model class. | |
| This constructor sets up the model based on the provided model path or name. It handles various types of model | |
| sources, including local files, Ultralytics HUB models, and Triton Server models. The method initializes several | |
| important attributes of the model and prepares it for operations like training, prediction, or export. | |
| Args: | |
| model (Union[str, Path], optional): The path or model file to load or create. This can be a local | |
| file path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'. | |
| task (Any, optional): The task type associated with the YOLO model, specifying its application domain. | |
| Defaults to None. | |
| verbose (bool, optional): If True, enables verbose output during the model's initialization and subsequent | |
| operations. Defaults to False. | |
| Raises: | |
| FileNotFoundError: If the specified model file does not exist or is inaccessible. | |
| ValueError: If the model file or configuration is invalid or unsupported. | |
| ImportError: If required dependencies for specific model types (like HUB SDK) are not installed. | |
| """ | |
| super().__init__() | |
| self.callbacks = callbacks.get_default_callbacks() | |
| self.predictor = None # reuse predictor | |
| self.model = None # model object | |
| self.trainer = None # trainer object | |
| self.ckpt = None # if loaded from *.pt | |
| self.cfg = None # if loaded from *.yaml | |
| self.ckpt_path = None | |
| self.overrides = {} # overrides for trainer object | |
| self.metrics = None # validation/training metrics | |
| self.session = None # HUB session | |
| self.task = task # task type | |
| model = str(model).strip() | |
| # Check if Ultralytics HUB model from https://hub.ultralytics.com | |
| if self.is_hub_model(model): | |
| # Fetch model from HUB | |
| checks.check_requirements("hub-sdk>=0.0.8") | |
| self.session = HUBTrainingSession.create_session(model) | |
| model = self.session.model_file | |
| # Check if Triton Server model | |
| elif self.is_triton_model(model): | |
| self.model_name = self.model = model | |
| return | |
| # Load or create new YOLO model | |
| if Path(model).suffix in {".yaml", ".yml"}: | |
| self._new(model, task=task, verbose=verbose) | |
| else: | |
| self._load(model, task=task) | |
| def __call__( | |
| self, | |
| source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, | |
| stream: bool = False, | |
| **kwargs, | |
| ) -> list: | |
| """ | |
| An alias for the predict method, enabling the model instance to be callable. | |
| This method simplifies the process of making predictions by allowing the model instance to be called directly | |
| with the required arguments for prediction. | |
| Args: | |
| source (str | Path | int | PIL.Image | np.ndarray, optional): The source of the image for making | |
| predictions. Accepts various types, including file paths, URLs, PIL images, and numpy arrays. | |
| Defaults to None. | |
| stream (bool, optional): If True, treats the input source as a continuous stream for predictions. | |
| Defaults to False. | |
| **kwargs (any): Additional keyword arguments for configuring the prediction process. | |
| Returns: | |
| (List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class. | |
| """ | |
| return self.predict(source, stream, **kwargs) | |
| def is_triton_model(model: str) -> bool: | |
| """Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>""" | |
| from urllib.parse import urlsplit | |
| url = urlsplit(model) | |
| return url.netloc and url.path and url.scheme in {"http", "grpc"} | |
| def is_hub_model(model: str) -> bool: | |
| """Check if the provided model is a HUB model.""" | |
| return any( | |
| ( | |
| model.startswith(f"{HUB_WEB_ROOT}/models/"), # i.e. https://hub.ultralytics.com/models/MODEL_ID | |
| [len(x) for x in model.split("_")] == [42, 20], # APIKEY_MODEL | |
| len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"), # MODEL | |
| ) | |
| ) | |
| def _new(self, cfg: str, task=None, model=None, verbose=False) -> None: | |
| """ | |
| Initializes a new model and infers the task type from the model definitions. | |
| Args: | |
| cfg (str): model configuration file | |
| task (str | None): model task | |
| model (BaseModel): Customized model. | |
| verbose (bool): display model info on load | |
| """ | |
| cfg_dict = yaml_model_load(cfg) | |
| self.cfg = cfg | |
| self.task = task or guess_model_task(cfg_dict) | |
| self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model | |
| self.overrides["model"] = self.cfg | |
| self.overrides["task"] = self.task | |
| # Below added to allow export from YAMLs | |
| self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args) | |
| self.model.task = self.task | |
| self.model_name = cfg | |
| def _load(self, weights: str, task=None) -> None: | |
| """ | |
| Initializes a new model and infers the task type from the model head. | |
| Args: | |
| weights (str): model checkpoint to be loaded | |
| task (str | None): model task | |
| """ | |
| if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")): | |
| weights = checks.check_file(weights) # automatically download and return local filename | |
| weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolov8n -> yolov8n.pt | |
| if Path(weights).suffix == ".pt": | |
| self.model, self.ckpt = attempt_load_one_weight(weights) | |
| self.task = self.model.args["task"] | |
| self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) | |
| self.ckpt_path = self.model.pt_path | |
| else: | |
| weights = checks.check_file(weights) # runs in all cases, not redundant with above call | |
| self.model, self.ckpt = weights, None | |
| self.task = task or guess_model_task(weights) | |
| self.ckpt_path = weights | |
| self.overrides["model"] = weights | |
| self.overrides["task"] = self.task | |
| self.model_name = weights | |
| def _check_is_pytorch_model(self) -> None: | |
| """Raises TypeError is model is not a PyTorch model.""" | |
| pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt" | |
| pt_module = isinstance(self.model, nn.Module) | |
| if not (pt_module or pt_str): | |
| raise TypeError( | |
| f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. " | |
| f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported " | |
| f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, " | |
| f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device " | |
| f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'" | |
| ) | |
| def reset_weights(self) -> "Model": | |
| """ | |
| Resets the model parameters to randomly initialized values, effectively discarding all training information. | |
| This method iterates through all modules in the model and resets their parameters if they have a | |
| 'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True, enabling them | |
| to be updated during training. | |
| Returns: | |
| self (ultralytics.engine.model.Model): The instance of the class with reset weights. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| for m in self.model.modules(): | |
| if hasattr(m, "reset_parameters"): | |
| m.reset_parameters() | |
| for p in self.model.parameters(): | |
| p.requires_grad = True | |
| return self | |
| def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model": | |
| """ | |
| Loads parameters from the specified weights file into the model. | |
| This method supports loading weights from a file or directly from a weights object. It matches parameters by | |
| name and shape and transfers them to the model. | |
| Args: | |
| weights (str | Path): Path to the weights file or a weights object. Defaults to 'yolov8n.pt'. | |
| Returns: | |
| self (ultralytics.engine.model.Model): The instance of the class with loaded weights. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| if isinstance(weights, (str, Path)): | |
| weights, self.ckpt = attempt_load_one_weight(weights) | |
| self.model.load(weights) | |
| return self | |
| def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None: | |
| """ | |
| Saves the current model state to a file. | |
| This method exports the model's checkpoint (ckpt) to the specified filename. | |
| Args: | |
| filename (str | Path): The name of the file to save the model to. Defaults to 'saved_model.pt'. | |
| use_dill (bool): Whether to try using dill for serialization if available. Defaults to True. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| from datetime import datetime | |
| from ultralytics import __version__ | |
| updates = { | |
| "date": datetime.now().isoformat(), | |
| "version": __version__, | |
| "license": "AGPL-3.0 License (https://ultralytics.com/license)", | |
| "docs": "https://docs.ultralytics.com", | |
| } | |
| torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill) | |
| def info(self, detailed: bool = False, verbose: bool = True): | |
| """ | |
| Logs or returns model information. | |
| This method provides an overview or detailed information about the model, depending on the arguments passed. | |
| It can control the verbosity of the output. | |
| Args: | |
| detailed (bool): If True, shows detailed information about the model. Defaults to False. | |
| verbose (bool): If True, prints the information. If False, returns the information. Defaults to True. | |
| Returns: | |
| (list): Various types of information about the model, depending on the 'detailed' and 'verbose' parameters. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| return self.model.info(detailed=detailed, verbose=verbose) | |
| def fuse(self): | |
| """ | |
| Fuses Conv2d and BatchNorm2d layers in the model. | |
| This method optimizes the model by fusing Conv2d and BatchNorm2d layers, which can improve inference speed. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| self.model.fuse() | |
| def embed( | |
| self, | |
| source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, | |
| stream: bool = False, | |
| **kwargs, | |
| ) -> list: | |
| """ | |
| Generates image embeddings based on the provided source. | |
| This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image source. | |
| It allows customization of the embedding process through various keyword arguments. | |
| Args: | |
| source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings. | |
| The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None. | |
| stream (bool): If True, predictions are streamed. Defaults to False. | |
| **kwargs (any): Additional keyword arguments for configuring the embedding process. | |
| Returns: | |
| (List[torch.Tensor]): A list containing the image embeddings. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| if not kwargs.get("embed"): | |
| kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed | |
| return self.predict(source, stream, **kwargs) | |
| def predict( | |
| self, | |
| source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, | |
| stream: bool = False, | |
| predictor=None, | |
| **kwargs, | |
| ) -> List[Results]: | |
| """ | |
| Performs predictions on the given image source using the YOLO model. | |
| This method facilitates the prediction process, allowing various configurations through keyword arguments. | |
| It supports predictions with custom predictors or the default predictor method. The method handles different | |
| types of image sources and can operate in a streaming mode. It also provides support for SAM-type models | |
| through 'prompts'. | |
| The method sets up a new predictor if not already present and updates its arguments with each call. | |
| It also issues a warning and uses default assets if the 'source' is not provided. The method determines if it | |
| is being called from the command line interface and adjusts its behavior accordingly, including setting defaults | |
| for confidence threshold and saving behavior. | |
| Args: | |
| source (str | int | PIL.Image | np.ndarray, optional): The source of the image for making predictions. | |
| Accepts various types, including file paths, URLs, PIL images, and numpy arrays. Defaults to ASSETS. | |
| stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False. | |
| predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions. | |
| If None, the method uses a default predictor. Defaults to None. | |
| **kwargs (any): Additional keyword arguments for configuring the prediction process. These arguments allow | |
| for further customization of the prediction behavior. | |
| Returns: | |
| (List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class. | |
| Raises: | |
| AttributeError: If the predictor is not properly set up. | |
| """ | |
| if source is None: | |
| source = ASSETS | |
| LOGGER.warning(f"WARNING โ ๏ธ 'source' is missing. Using 'source={source}'.") | |
| is_cli = (ARGV[0].endswith("yolo") or ARGV[0].endswith("ultralytics")) and any( | |
| x in ARGV for x in ("predict", "track", "mode=predict", "mode=track") | |
| ) | |
| custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults | |
| args = {**self.overrides, **custom, **kwargs} # highest priority args on the right | |
| prompts = args.pop("prompts", None) # for SAM-type models | |
| if not self.predictor: | |
| self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks) | |
| self.predictor.setup_model(model=self.model, verbose=is_cli) | |
| else: # only update args if predictor is already setup | |
| self.predictor.args = get_cfg(self.predictor.args, args) | |
| if "project" in args or "name" in args: | |
| self.predictor.save_dir = get_save_dir(self.predictor.args) | |
| if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models | |
| self.predictor.set_prompts(prompts) | |
| return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) | |
| def track( | |
| self, | |
| source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None, | |
| stream: bool = False, | |
| persist: bool = False, | |
| **kwargs, | |
| ) -> List[Results]: | |
| """ | |
| Conducts object tracking on the specified input source using the registered trackers. | |
| This method performs object tracking using the model's predictors and optionally registered trackers. It is | |
| capable of handling different types of input sources such as file paths or video streams. The method supports | |
| customization of the tracking process through various keyword arguments. It registers trackers if they are not | |
| already present and optionally persists them based on the 'persist' flag. | |
| The method sets a default confidence threshold specifically for ByteTrack-based tracking, which requires low | |
| confidence predictions as input. The tracking mode is explicitly set in the keyword arguments. | |
| Args: | |
| source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream. | |
| stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False. | |
| persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False. | |
| **kwargs (any): Additional keyword arguments for configuring the tracking process. These arguments allow | |
| for further customization of the tracking behavior. | |
| Returns: | |
| (List[ultralytics.engine.results.Results]): A list of tracking results, encapsulated in the Results class. | |
| Raises: | |
| AttributeError: If the predictor does not have registered trackers. | |
| """ | |
| if not hasattr(self.predictor, "trackers"): | |
| from ultralytics.trackers import register_tracker | |
| register_tracker(self, persist) | |
| kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input | |
| kwargs["batch"] = kwargs.get("batch") or 1 # batch-size 1 for tracking in videos | |
| kwargs["mode"] = "track" | |
| return self.predict(source=source, stream=stream, **kwargs) | |
| def val( | |
| self, | |
| validator=None, | |
| **kwargs, | |
| ): | |
| """ | |
| Validates the model using a specified dataset and validation configuration. | |
| This method facilitates the model validation process, allowing for a range of customization through various | |
| settings and configurations. It supports validation with a custom validator or the default validation approach. | |
| The method combines default configurations, method-specific defaults, and user-provided arguments to configure | |
| the validation process. After validation, it updates the model's metrics with the results obtained from the | |
| validator. | |
| The method supports various arguments that allow customization of the validation process. For a comprehensive | |
| list of all configurable options, users should refer to the 'configuration' section in the documentation. | |
| Args: | |
| validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If | |
| None, the method uses a default validator. Defaults to None. | |
| **kwargs (any): Arbitrary keyword arguments representing the validation configuration. These arguments are | |
| used to customize various aspects of the validation process. | |
| Returns: | |
| (dict): Validation metrics obtained from the validation process. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| custom = {"rect": True} # method defaults | |
| args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right | |
| validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks) | |
| validator(model=self.model) | |
| self.metrics = validator.metrics | |
| return validator.metrics | |
| def benchmark( | |
| self, | |
| **kwargs, | |
| ): | |
| """ | |
| Benchmarks the model across various export formats to evaluate performance. | |
| This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc. | |
| It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is configured | |
| using a combination of default configuration values, model-specific arguments, method-specific defaults, and | |
| any additional user-provided keyword arguments. | |
| The method supports various arguments that allow customization of the benchmarking process, such as dataset | |
| choice, image size, precision modes, device selection, and verbosity. For a comprehensive list of all | |
| configurable options, users should refer to the 'configuration' section in the documentation. | |
| Args: | |
| **kwargs (any): Arbitrary keyword arguments to customize the benchmarking process. These are combined with | |
| default configurations, model-specific arguments, and method defaults. | |
| Returns: | |
| (dict): A dictionary containing the results of the benchmarking process. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| from ultralytics.utils.benchmarks import benchmark | |
| custom = {"verbose": False} # method defaults | |
| args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"} | |
| return benchmark( | |
| model=self, | |
| data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets | |
| imgsz=args["imgsz"], | |
| half=args["half"], | |
| int8=args["int8"], | |
| device=args["device"], | |
| verbose=kwargs.get("verbose"), | |
| ) | |
| def export( | |
| self, | |
| **kwargs, | |
| ) -> str: | |
| """ | |
| Exports the model to a different format suitable for deployment. | |
| This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment | |
| purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method | |
| defaults, and any additional arguments provided. The combined arguments are used to configure export settings. | |
| The method supports a wide range of arguments to customize the export process. For a comprehensive list of all | |
| possible arguments, refer to the 'configuration' section in the documentation. | |
| Args: | |
| **kwargs (any): Arbitrary keyword arguments to customize the export process. These are combined with the | |
| model's overrides and method defaults. | |
| Returns: | |
| (str): The exported model filename in the specified format, or an object related to the export process. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| from .exporter import Exporter | |
| custom = {"imgsz": self.model.args["imgsz"], "batch": 1, "data": None, "verbose": False} # method defaults | |
| args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right | |
| return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) | |
| def train( | |
| self, | |
| trainer=None, | |
| **kwargs, | |
| ): | |
| """ | |
| Trains the model using the specified dataset and training configuration. | |
| This method facilitates model training with a range of customizable settings and configurations. It supports | |
| training with a custom trainer or the default training approach defined in the method. The method handles | |
| different scenarios, such as resuming training from a checkpoint, integrating with Ultralytics HUB, and | |
| updating model and configuration after training. | |
| When using Ultralytics HUB, if the session already has a loaded model, the method prioritizes HUB training | |
| arguments and issues a warning if local arguments are provided. It checks for pip updates and combines default | |
| configurations, method-specific defaults, and user-provided arguments to configure the training process. After | |
| training, it updates the model and its configurations, and optionally attaches metrics. | |
| Args: | |
| trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the | |
| method uses a default trainer. Defaults to None. | |
| **kwargs (any): Arbitrary keyword arguments representing the training configuration. These arguments are | |
| used to customize various aspects of the training process. | |
| Returns: | |
| (dict | None): Training metrics if available and training is successful; otherwise, None. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| PermissionError: If there is a permission issue with the HUB session. | |
| ModuleNotFoundError: If the HUB SDK is not installed. | |
| """ | |
| self._check_is_pytorch_model() | |
| if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model | |
| if any(kwargs): | |
| LOGGER.warning("WARNING โ ๏ธ using HUB training arguments, ignoring local training arguments.") | |
| kwargs = self.session.train_args # overwrite kwargs | |
| checks.check_pip_update_available() | |
| overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides | |
| custom = { | |
| # NOTE: handle the case when 'cfg' includes 'data'. | |
| "data": overrides.get("data") or DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task], | |
| "model": self.overrides["model"], | |
| "task": self.task, | |
| } # method defaults | |
| args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right | |
| if args.get("resume"): | |
| args["resume"] = self.ckpt_path | |
| self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) | |
| if not args.get("resume"): # manually set model only if not resuming | |
| self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) | |
| self.model = self.trainer.model | |
| self.trainer.hub_session = self.session # attach optional HUB session | |
| self.trainer.train() | |
| # Update model and cfg after training | |
| if RANK in {-1, 0}: | |
| ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last | |
| self.model, _ = attempt_load_one_weight(ckpt) | |
| self.overrides = self.model.args | |
| self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP | |
| return self.metrics | |
| def tune( | |
| self, | |
| use_ray=False, | |
| iterations=10, | |
| *args, | |
| **kwargs, | |
| ): | |
| """ | |
| Conducts hyperparameter tuning for the model, with an option to use Ray Tune. | |
| This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method. | |
| When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module. | |
| Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and | |
| custom arguments to configure the tuning process. | |
| Args: | |
| use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False. | |
| iterations (int): The number of tuning iterations to perform. Defaults to 10. | |
| *args (list): Variable length argument list for additional arguments. | |
| **kwargs (any): Arbitrary keyword arguments. These are combined with the model's overrides and defaults. | |
| Returns: | |
| (dict): A dictionary containing the results of the hyperparameter search. | |
| Raises: | |
| AssertionError: If the model is not a PyTorch model. | |
| """ | |
| self._check_is_pytorch_model() | |
| if use_ray: | |
| from ultralytics.utils.tuner import run_ray_tune | |
| return run_ray_tune(self, max_samples=iterations, *args, **kwargs) | |
| else: | |
| from .tuner import Tuner | |
| custom = {} # method defaults | |
| args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right | |
| return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations) | |
| def _apply(self, fn) -> "Model": | |
| """Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers.""" | |
| self._check_is_pytorch_model() | |
| self = super()._apply(fn) # noqa | |
| self.predictor = None # reset predictor as device may have changed | |
| self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0' | |
| return self | |
| def names(self) -> list: | |
| """ | |
| Retrieves the class names associated with the loaded model. | |
| This property returns the class names if they are defined in the model. It checks the class names for validity | |
| using the 'check_class_names' function from the ultralytics.nn.autobackend module. | |
| Returns: | |
| (list | None): The class names of the model if available, otherwise None. | |
| """ | |
| from ultralytics.nn.autobackend import check_class_names | |
| if hasattr(self.model, "names"): | |
| return check_class_names(self.model.names) | |
| if not self.predictor: # export formats will not have predictor defined until predict() is called | |
| self.predictor = self._smart_load("predictor")(overrides=self.overrides, _callbacks=self.callbacks) | |
| self.predictor.setup_model(model=self.model, verbose=False) | |
| return self.predictor.model.names | |
| def device(self) -> torch.device: | |
| """ | |
| Retrieves the device on which the model's parameters are allocated. | |
| This property is used to determine whether the model's parameters are on CPU or GPU. It only applies to models | |
| that are instances of nn.Module. | |
| Returns: | |
| (torch.device | None): The device (CPU/GPU) of the model if it is a PyTorch model, otherwise None. | |
| """ | |
| return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None | |
| def transforms(self): | |
| """ | |
| Retrieves the transformations applied to the input data of the loaded model. | |
| This property returns the transformations if they are defined in the model. | |
| Returns: | |
| (object | None): The transform object of the model if available, otherwise None. | |
| """ | |
| return self.model.transforms if hasattr(self.model, "transforms") else None | |
| def add_callback(self, event: str, func) -> None: | |
| """ | |
| Adds a callback function for a specified event. | |
| This method allows the user to register a custom callback function that is triggered on a specific event during | |
| model training or inference. | |
| Args: | |
| event (str): The name of the event to attach the callback to. | |
| func (callable): The callback function to be registered. | |
| Raises: | |
| ValueError: If the event name is not recognized. | |
| """ | |
| self.callbacks[event].append(func) | |
| def clear_callback(self, event: str) -> None: | |
| """ | |
| Clears all callback functions registered for a specified event. | |
| This method removes all custom and default callback functions associated with the given event. | |
| Args: | |
| event (str): The name of the event for which to clear the callbacks. | |
| Raises: | |
| ValueError: If the event name is not recognized. | |
| """ | |
| self.callbacks[event] = [] | |
| def reset_callbacks(self) -> None: | |
| """ | |
| Resets all callbacks to their default functions. | |
| This method reinstates the default callback functions for all events, removing any custom callbacks that were | |
| added previously. | |
| """ | |
| for event in callbacks.default_callbacks.keys(): | |
| self.callbacks[event] = [callbacks.default_callbacks[event][0]] | |
| def _reset_ckpt_args(args: dict) -> dict: | |
| """Reset arguments when loading a PyTorch model.""" | |
| include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model | |
| return {k: v for k, v in args.items() if k in include} | |
| # def __getattr__(self, attr): | |
| # """Raises error if object has no requested attribute.""" | |
| # name = self.__class__.__name__ | |
| # raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |
| def _smart_load(self, key: str): | |
| """Load model/trainer/validator/predictor.""" | |
| try: | |
| return self.task_map[self.task][key] | |
| except Exception as e: | |
| name = self.__class__.__name__ | |
| mode = inspect.stack()[1][3] # get the function name. | |
| raise NotImplementedError( | |
| emojis(f"WARNING โ ๏ธ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.") | |
| ) from e | |
| def task_map(self) -> dict: | |
| """ | |
| Map head to model, trainer, validator, and predictor classes. | |
| Returns: | |
| task_map (dict): The map of model task to mode classes. | |
| """ | |
| raise NotImplementedError("Please provide task map for your model!") | |