Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO ๐, AGPL-3.0 license | |
| """ | |
| Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
| Usage - sources: | |
| $ yolo mode=predict model=yolov8n.pt source=0 # webcam | |
| img.jpg # image | |
| vid.mp4 # video | |
| screen # screenshot | |
| path/ # directory | |
| list.txt # list of images | |
| list.streams # list of streams | |
| 'path/*.jpg' # glob | |
| 'https://youtu.be/LNwODJXcvt4' # YouTube | |
| 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream | |
| Usage - formats: | |
| $ yolo mode=predict model=yolov8n.pt # PyTorch | |
| yolov8n.torchscript # TorchScript | |
| yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
| yolov8n_openvino_model # OpenVINO | |
| yolov8n.engine # TensorRT | |
| yolov8n.mlpackage # CoreML (macOS-only) | |
| yolov8n_saved_model # TensorFlow SavedModel | |
| yolov8n.pb # TensorFlow GraphDef | |
| yolov8n.tflite # TensorFlow Lite | |
| yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
| yolov8n_paddle_model # PaddlePaddle | |
| yolov8n_ncnn_model # NCNN | |
| """ | |
| import platform | |
| import re | |
| import threading | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from ultralytics.cfg import get_cfg, get_save_dir | |
| from ultralytics.data import load_inference_source | |
| from ultralytics.data.augment import LetterBox, classify_transforms | |
| from ultralytics.nn.autobackend import AutoBackend | |
| from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops | |
| from ultralytics.utils.checks import check_imgsz, check_imshow | |
| from ultralytics.utils.files import increment_path | |
| from ultralytics.utils.torch_utils import select_device, smart_inference_mode | |
| STREAM_WARNING = """ | |
| WARNING โ ๏ธ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory | |
| errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help. | |
| Example: | |
| results = model(source=..., stream=True) # generator of Results objects | |
| for r in results: | |
| boxes = r.boxes # Boxes object for bbox outputs | |
| masks = r.masks # Masks object for segment masks outputs | |
| probs = r.probs # Class probabilities for classification outputs | |
| """ | |
| class BasePredictor: | |
| """ | |
| BasePredictor. | |
| A base class for creating predictors. | |
| Attributes: | |
| args (SimpleNamespace): Configuration for the predictor. | |
| save_dir (Path): Directory to save results. | |
| done_warmup (bool): Whether the predictor has finished setup. | |
| model (nn.Module): Model used for prediction. | |
| data (dict): Data configuration. | |
| device (torch.device): Device used for prediction. | |
| dataset (Dataset): Dataset used for prediction. | |
| vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output. | |
| """ | |
| def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
| """ | |
| Initializes the BasePredictor class. | |
| Args: | |
| cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
| overrides (dict, optional): Configuration overrides. Defaults to None. | |
| """ | |
| self.args = get_cfg(cfg, overrides) | |
| self.save_dir = get_save_dir(self.args) | |
| if self.args.conf is None: | |
| self.args.conf = 0.25 # default conf=0.25 | |
| self.done_warmup = False | |
| if self.args.show: | |
| self.args.show = check_imshow(warn=True) | |
| # Usable if setup is done | |
| self.model = None | |
| self.data = self.args.data # data_dict | |
| self.imgsz = None | |
| self.device = None | |
| self.dataset = None | |
| self.vid_writer = {} # dict of {save_path: video_writer, ...} | |
| self.plotted_img = None | |
| self.source_type = None | |
| self.seen = 0 | |
| self.windows = [] | |
| self.batch = None | |
| self.results = None | |
| self.transforms = None | |
| self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
| self.txt_path = None | |
| self._lock = threading.Lock() # for automatic thread-safe inference | |
| callbacks.add_integration_callbacks(self) | |
| def preprocess(self, im): | |
| """ | |
| Prepares input image before inference. | |
| Args: | |
| im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list. | |
| """ | |
| not_tensor = not isinstance(im, torch.Tensor) | |
| if not_tensor: | |
| im = np.stack(self.pre_transform(im)) | |
| im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) | |
| im = np.ascontiguousarray(im) # contiguous | |
| im = torch.from_numpy(im) | |
| im = im.to(self.device) | |
| im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32 | |
| if not_tensor: | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| return im | |
| def inference(self, im, *args, **kwargs): | |
| """Runs inference on a given image using the specified model and arguments.""" | |
| visualize = ( | |
| increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True) | |
| if self.args.visualize and (not self.source_type.tensor) | |
| else False | |
| ) | |
| return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs) | |
| def pre_transform(self, im): | |
| """ | |
| Pre-transform input image before inference. | |
| Args: | |
| im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. | |
| Returns: | |
| (list): A list of transformed images. | |
| """ | |
| same_shapes = len({x.shape for x in im}) == 1 | |
| letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride) | |
| return [letterbox(image=x) for x in im] | |
| def postprocess(self, preds, img, orig_imgs): | |
| """Post-processes predictions for an image and returns them.""" | |
| return preds | |
| def __call__(self, source=None, model=None, stream=False, *args, **kwargs): | |
| """Performs inference on an image or stream.""" | |
| self.stream = stream | |
| if stream: | |
| return self.stream_inference(source, model, *args, **kwargs) | |
| else: | |
| return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one | |
| def predict_cli(self, source=None, model=None): | |
| """ | |
| Method used for Command Line Interface (CLI) prediction. | |
| This function is designed to run predictions using the CLI. It sets up the source and model, then processes | |
| the inputs in a streaming manner. This method ensures that no outputs accumulate in memory by consuming the | |
| generator without storing results. | |
| Note: | |
| Do not modify this function or remove the generator. The generator ensures that no outputs are | |
| accumulated in memory, which is critical for preventing memory issues during long-running predictions. | |
| """ | |
| gen = self.stream_inference(source, model) | |
| for _ in gen: # sourcery skip: remove-empty-nested-block, noqa | |
| pass | |
| def setup_source(self, source): | |
| """Sets up source and inference mode.""" | |
| self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size | |
| self.transforms = ( | |
| getattr( | |
| self.model.model, | |
| "transforms", | |
| classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction), | |
| ) | |
| if self.args.task == "classify" | |
| else None | |
| ) | |
| self.dataset = load_inference_source( | |
| source=source, | |
| batch=self.args.batch, | |
| vid_stride=self.args.vid_stride, | |
| buffer=self.args.stream_buffer, | |
| ) | |
| self.source_type = self.dataset.source_type | |
| if not getattr(self, "stream", True) and ( | |
| self.source_type.stream | |
| or self.source_type.screenshot | |
| or len(self.dataset) > 1000 # many images | |
| or any(getattr(self.dataset, "video_flag", [False])) | |
| ): # videos | |
| LOGGER.warning(STREAM_WARNING) | |
| self.vid_writer = {} | |
| def stream_inference(self, source=None, model=None, *args, **kwargs): | |
| """Streams real-time inference on camera feed and saves results to file.""" | |
| if self.args.verbose: | |
| LOGGER.info("") | |
| # Setup model | |
| if not self.model: | |
| self.setup_model(model) | |
| with self._lock: # for thread-safe inference | |
| # Setup source every time predict is called | |
| self.setup_source(source if source is not None else self.args.source) | |
| # Check if save_dir/ label file exists | |
| if self.args.save or self.args.save_txt: | |
| (self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
| # Warmup model | |
| if not self.done_warmup: | |
| self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) | |
| self.done_warmup = True | |
| self.seen, self.windows, self.batch = 0, [], None | |
| profilers = ( | |
| ops.Profile(device=self.device), | |
| ops.Profile(device=self.device), | |
| ops.Profile(device=self.device), | |
| ) | |
| self.run_callbacks("on_predict_start") | |
| for self.batch in self.dataset: | |
| self.run_callbacks("on_predict_batch_start") | |
| paths, im0s, s = self.batch | |
| # Preprocess | |
| with profilers[0]: | |
| im = self.preprocess(im0s) | |
| # Inference | |
| with profilers[1]: | |
| preds = self.inference(im, *args, **kwargs) | |
| if self.args.embed: | |
| yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors | |
| continue | |
| # Postprocess | |
| with profilers[2]: | |
| self.results = self.postprocess(preds, im, im0s) | |
| self.run_callbacks("on_predict_postprocess_end") | |
| # Visualize, save, write results | |
| n = len(im0s) | |
| for i in range(n): | |
| self.seen += 1 | |
| self.results[i].speed = { | |
| "preprocess": profilers[0].dt * 1e3 / n, | |
| "inference": profilers[1].dt * 1e3 / n, | |
| "postprocess": profilers[2].dt * 1e3 / n, | |
| } | |
| if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: | |
| s[i] += self.write_results(i, Path(paths[i]), im, s) | |
| # Print batch results | |
| if self.args.verbose: | |
| LOGGER.info("\n".join(s)) | |
| self.run_callbacks("on_predict_batch_end") | |
| yield from self.results | |
| # Release assets | |
| for v in self.vid_writer.values(): | |
| if isinstance(v, cv2.VideoWriter): | |
| v.release() | |
| # Print final results | |
| if self.args.verbose and self.seen: | |
| t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image | |
| LOGGER.info( | |
| f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape " | |
| f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t | |
| ) | |
| if self.args.save or self.args.save_txt or self.args.save_crop: | |
| nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels | |
| s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else "" | |
| LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") | |
| self.run_callbacks("on_predict_end") | |
| def setup_model(self, model, verbose=True): | |
| """Initialize YOLO model with given parameters and set it to evaluation mode.""" | |
| self.model = AutoBackend( | |
| weights=model or self.args.model, | |
| device=select_device(self.args.device, verbose=verbose), | |
| dnn=self.args.dnn, | |
| data=self.args.data, | |
| fp16=self.args.half, | |
| batch=self.args.batch, | |
| fuse=True, | |
| verbose=verbose, | |
| ) | |
| self.device = self.model.device # update device | |
| self.args.half = self.model.fp16 # update half | |
| self.model.eval() | |
| def write_results(self, i, p, im, s): | |
| """Write inference results to a file or directory.""" | |
| string = "" # print string | |
| if len(im.shape) == 3: | |
| im = im[None] # expand for batch dim | |
| if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1 | |
| string += f"{i}: " | |
| frame = self.dataset.count | |
| else: | |
| match = re.search(r"frame (\d+)/", s[i]) | |
| frame = int(match[1]) if match else None # 0 if frame undetermined | |
| self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}")) | |
| string += "%gx%g " % im.shape[2:] | |
| result = self.results[i] | |
| result.save_dir = self.save_dir.__str__() # used in other locations | |
| string += f"{result.verbose()}{result.speed['inference']:.1f}ms" | |
| # Add predictions to image | |
| if self.args.save or self.args.show: | |
| self.plotted_img = result.plot( | |
| line_width=self.args.line_width, | |
| boxes=self.args.show_boxes, | |
| conf=self.args.show_conf, | |
| labels=self.args.show_labels, | |
| im_gpu=None if self.args.retina_masks else im[i], | |
| ) | |
| # Save results | |
| if self.args.save_txt: | |
| result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf) | |
| if self.args.save_crop: | |
| result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem) | |
| if self.args.show: | |
| self.show(str(p)) | |
| if self.args.save: | |
| self.save_predicted_images(str(self.save_dir / p.name), frame) | |
| return string | |
| def save_predicted_images(self, save_path="", frame=0): | |
| """Save video predictions as mp4 at specified path.""" | |
| im = self.plotted_img | |
| # Save videos and streams | |
| if self.dataset.mode in {"stream", "video"}: | |
| fps = self.dataset.fps if self.dataset.mode == "video" else 30 | |
| frames_path = f'{save_path.split(".", 1)[0]}_frames/' | |
| if save_path not in self.vid_writer: # new video | |
| if self.args.save_frames: | |
| Path(frames_path).mkdir(parents=True, exist_ok=True) | |
| suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG") | |
| self.vid_writer[save_path] = cv2.VideoWriter( | |
| filename=str(Path(save_path).with_suffix(suffix)), | |
| fourcc=cv2.VideoWriter_fourcc(*fourcc), | |
| fps=fps, # integer required, floats produce error in MP4 codec | |
| frameSize=(im.shape[1], im.shape[0]), # (width, height) | |
| ) | |
| # Save video | |
| self.vid_writer[save_path].write(im) | |
| if self.args.save_frames: | |
| cv2.imwrite(f"{frames_path}{frame}.jpg", im) | |
| # Save images | |
| else: | |
| cv2.imwrite(save_path, im) | |
| def show(self, p=""): | |
| """Display an image in a window using OpenCV imshow().""" | |
| im = self.plotted_img | |
| if platform.system() == "Linux" and p not in self.windows: | |
| self.windows.append(p) | |
| cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
| cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height) | |
| cv2.imshow(p, im) | |
| cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond | |
| def run_callbacks(self, event: str): | |
| """Runs all registered callbacks for a specific event.""" | |
| for callback in self.callbacks.get(event, []): | |
| callback(self) | |
| def add_callback(self, event: str, func): | |
| """Add callback.""" | |
| self.callbacks[event].append(func) | |