Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO π, AGPL-3.0 license | |
| """ | |
| This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, | |
| instance segmentation, image classification, pose estimation, and multi-object tracking. | |
| Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters | |
| that yield the best model performance. This is particularly crucial in deep learning models like YOLO, | |
| where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency. | |
| Example: | |
| Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations. | |
| ```python | |
| from ultralytics import YOLO | |
| model = YOLO('yolov8n.pt') | |
| model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False) | |
| ``` | |
| """ | |
| import random | |
| import shutil | |
| import subprocess | |
| import time | |
| import numpy as np | |
| import torch | |
| from ultralytics.cfg import get_cfg, get_save_dir | |
| from ultralytics.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, remove_colorstr, yaml_print, yaml_save | |
| from ultralytics.utils.plotting import plot_tune_results | |
| class Tuner: | |
| """ | |
| Class responsible for hyperparameter tuning of YOLO models. | |
| The class evolves YOLO model hyperparameters over a given number of iterations | |
| by mutating them according to the search space and retraining the model to evaluate their performance. | |
| Attributes: | |
| space (dict): Hyperparameter search space containing bounds and scaling factors for mutation. | |
| tune_dir (Path): Directory where evolution logs and results will be saved. | |
| tune_csv (Path): Path to the CSV file where evolution logs are saved. | |
| Methods: | |
| _mutate(hyp: dict) -> dict: | |
| Mutates the given hyperparameters within the bounds specified in `self.space`. | |
| __call__(): | |
| Executes the hyperparameter evolution across multiple iterations. | |
| Example: | |
| Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations. | |
| ```python | |
| from ultralytics import YOLO | |
| model = YOLO('yolov8n.pt') | |
| model.tune(data='coco8.yaml', epochs=10, iterations=300, optimizer='AdamW', plots=False, save=False, val=False) | |
| ``` | |
| Tune with custom search space. | |
| ```python | |
| from ultralytics import YOLO | |
| model = YOLO('yolov8n.pt') | |
| model.tune(space={key1: val1, key2: val2}) # custom search space dictionary | |
| ``` | |
| """ | |
| def __init__(self, args=DEFAULT_CFG, _callbacks=None): | |
| """ | |
| Initialize the Tuner with configurations. | |
| Args: | |
| args (dict, optional): Configuration for hyperparameter evolution. | |
| """ | |
| self.space = args.pop("space", None) or { # key: (min, max, gain(optional)) | |
| # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), | |
| "lr0": (1e-5, 1e-1), # initial learning rate (i.e. SGD=1E-2, Adam=1E-3) | |
| "lrf": (0.0001, 0.1), # final OneCycleLR learning rate (lr0 * lrf) | |
| "momentum": (0.7, 0.98, 0.3), # SGD momentum/Adam beta1 | |
| "weight_decay": (0.0, 0.001), # optimizer weight decay 5e-4 | |
| "warmup_epochs": (0.0, 5.0), # warmup epochs (fractions ok) | |
| "warmup_momentum": (0.0, 0.95), # warmup initial momentum | |
| "box": (1.0, 20.0), # box loss gain | |
| "cls": (0.2, 4.0), # cls loss gain (scale with pixels) | |
| "dfl": (0.4, 6.0), # dfl loss gain | |
| "hsv_h": (0.0, 0.1), # image HSV-Hue augmentation (fraction) | |
| "hsv_s": (0.0, 0.9), # image HSV-Saturation augmentation (fraction) | |
| "hsv_v": (0.0, 0.9), # image HSV-Value augmentation (fraction) | |
| "degrees": (0.0, 45.0), # image rotation (+/- deg) | |
| "translate": (0.0, 0.9), # image translation (+/- fraction) | |
| "scale": (0.0, 0.95), # image scale (+/- gain) | |
| "shear": (0.0, 10.0), # image shear (+/- deg) | |
| "perspective": (0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 | |
| "flipud": (0.0, 1.0), # image flip up-down (probability) | |
| "fliplr": (0.0, 1.0), # image flip left-right (probability) | |
| "bgr": (0.0, 1.0), # image channel bgr (probability) | |
| "mosaic": (0.0, 1.0), # image mixup (probability) | |
| "mixup": (0.0, 1.0), # image mixup (probability) | |
| "copy_paste": (0.0, 1.0), # segment copy-paste (probability) | |
| } | |
| self.args = get_cfg(overrides=args) | |
| self.tune_dir = get_save_dir(self.args, name="tune") | |
| self.tune_csv = self.tune_dir / "tune_results.csv" | |
| self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
| self.prefix = colorstr("Tuner: ") | |
| callbacks.add_integration_callbacks(self) | |
| LOGGER.info( | |
| f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n" | |
| f"{self.prefix}π‘ Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning" | |
| ) | |
| def _mutate(self, parent="single", n=5, mutation=0.8, sigma=0.2): | |
| """ | |
| Mutates the hyperparameters based on bounds and scaling factors specified in `self.space`. | |
| Args: | |
| parent (str): Parent selection method: 'single' or 'weighted'. | |
| n (int): Number of parents to consider. | |
| mutation (float): Probability of a parameter mutation in any given iteration. | |
| sigma (float): Standard deviation for Gaussian random number generator. | |
| Returns: | |
| (dict): A dictionary containing mutated hyperparameters. | |
| """ | |
| if self.tune_csv.exists(): # if CSV file exists: select best hyps and mutate | |
| # Select parent(s) | |
| x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1) | |
| fitness = x[:, 0] # first column | |
| n = min(n, len(x)) # number of previous results to consider | |
| x = x[np.argsort(-fitness)][:n] # top n mutations | |
| w = x[:, 0] - x[:, 0].min() + 1e-6 # weights (sum > 0) | |
| if parent == "single" or len(x) == 1: | |
| # x = x[random.randint(0, n - 1)] # random selection | |
| x = x[random.choices(range(n), weights=w)[0]] # weighted selection | |
| elif parent == "weighted": | |
| x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination | |
| # Mutate | |
| r = np.random # method | |
| r.seed(int(time.time())) | |
| g = np.array([v[2] if len(v) == 3 else 1.0 for k, v in self.space.items()]) # gains 0-1 | |
| ng = len(self.space) | |
| v = np.ones(ng) | |
| while all(v == 1): # mutate until a change occurs (prevent duplicates) | |
| v = (g * (r.random(ng) < mutation) * r.randn(ng) * r.random() * sigma + 1).clip(0.3, 3.0) | |
| hyp = {k: float(x[i + 1] * v[i]) for i, k in enumerate(self.space.keys())} | |
| else: | |
| hyp = {k: getattr(self.args, k) for k in self.space.keys()} | |
| # Constrain to limits | |
| for k, v in self.space.items(): | |
| hyp[k] = max(hyp[k], v[0]) # lower limit | |
| hyp[k] = min(hyp[k], v[1]) # upper limit | |
| hyp[k] = round(hyp[k], 5) # significant digits | |
| return hyp | |
| def __call__(self, model=None, iterations=10, cleanup=True): | |
| """ | |
| Executes the hyperparameter evolution process when the Tuner instance is called. | |
| This method iterates through the number of iterations, performing the following steps in each iteration: | |
| 1. Load the existing hyperparameters or initialize new ones. | |
| 2. Mutate the hyperparameters using the `mutate` method. | |
| 3. Train a YOLO model with the mutated hyperparameters. | |
| 4. Log the fitness score and mutated hyperparameters to a CSV file. | |
| Args: | |
| model (Model): A pre-initialized YOLO model to be used for training. | |
| iterations (int): The number of generations to run the evolution for. | |
| cleanup (bool): Whether to delete iteration weights to reduce storage space used during tuning. | |
| Note: | |
| The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores. | |
| Ensure this path is set correctly in the Tuner instance. | |
| """ | |
| t0 = time.time() | |
| best_save_dir, best_metrics = None, None | |
| (self.tune_dir / "weights").mkdir(parents=True, exist_ok=True) | |
| for i in range(iterations): | |
| # Mutate hyperparameters | |
| mutated_hyp = self._mutate() | |
| LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}") | |
| metrics = {} | |
| train_args = {**vars(self.args), **mutated_hyp} | |
| save_dir = get_save_dir(get_cfg(train_args)) | |
| weights_dir = save_dir / "weights" | |
| try: | |
| # Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang) | |
| cmd = ["yolo", "train", *(f"{k}={v}" for k, v in train_args.items())] | |
| return_code = subprocess.run(cmd, check=True).returncode | |
| ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt") | |
| metrics = torch.load(ckpt_file)["train_metrics"] | |
| assert return_code == 0, "training failed" | |
| except Exception as e: | |
| LOGGER.warning(f"WARNING βοΈ training failure for hyperparameter tuning iteration {i + 1}\n{e}") | |
| # Save results and mutated_hyp to CSV | |
| fitness = metrics.get("fitness", 0.0) | |
| log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()] | |
| headers = "" if self.tune_csv.exists() else (",".join(["fitness"] + list(self.space.keys())) + "\n") | |
| with open(self.tune_csv, "a") as f: | |
| f.write(headers + ",".join(map(str, log_row)) + "\n") | |
| # Get best results | |
| x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1) | |
| fitness = x[:, 0] # first column | |
| best_idx = fitness.argmax() | |
| best_is_current = best_idx == i | |
| if best_is_current: | |
| best_save_dir = save_dir | |
| best_metrics = {k: round(v, 5) for k, v in metrics.items()} | |
| for ckpt in weights_dir.glob("*.pt"): | |
| shutil.copy2(ckpt, self.tune_dir / "weights") | |
| elif cleanup: | |
| shutil.rmtree(weights_dir, ignore_errors=True) # remove iteration weights/ dir to reduce storage space | |
| # Plot tune results | |
| plot_tune_results(self.tune_csv) | |
| # Save and print tune results | |
| header = ( | |
| f'{self.prefix}{i + 1}/{iterations} iterations complete β ({time.time() - t0:.2f}s)\n' | |
| f'{self.prefix}Results saved to {colorstr("bold", self.tune_dir)}\n' | |
| f'{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n' | |
| f'{self.prefix}Best fitness metrics are {best_metrics}\n' | |
| f'{self.prefix}Best fitness model is {best_save_dir}\n' | |
| f'{self.prefix}Best fitness hyperparameters are printed below.\n' | |
| ) | |
| LOGGER.info("\n" + header) | |
| data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())} | |
| yaml_save( | |
| self.tune_dir / "best_hyperparameters.yaml", | |
| data=data, | |
| header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n", | |
| ) | |
| yaml_print(self.tune_dir / "best_hyperparameters.yaml") | |