Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO π, AGPL-3.0 license | |
| import torch | |
| from ultralytics.data import YOLODataset | |
| from ultralytics.data.augment import Compose, Format, v8_transforms | |
| from ultralytics.models.yolo.detect import DetectionValidator | |
| from ultralytics.utils import colorstr, ops | |
| __all__ = ("RTDETRValidator",) # tuple or list | |
| class RTDETRDataset(YOLODataset): | |
| """ | |
| Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class. | |
| This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for | |
| real-time detection and tracking tasks. | |
| """ | |
| def __init__(self, *args, data=None, **kwargs): | |
| """Initialize the RTDETRDataset class by inheriting from the YOLODataset class.""" | |
| super().__init__(*args, data=data, **kwargs) | |
| # NOTE: add stretch version load_image for RTDETR mosaic | |
| def load_image(self, i, rect_mode=False): | |
| """Loads 1 image from dataset index 'i', returns (im, resized hw).""" | |
| return super().load_image(i=i, rect_mode=rect_mode) | |
| def build_transforms(self, hyp=None): | |
| """Temporary, only for evaluation.""" | |
| if self.augment: | |
| hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 | |
| hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 | |
| transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) | |
| else: | |
| # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)]) | |
| transforms = Compose([]) | |
| transforms.append( | |
| Format( | |
| bbox_format="xywh", | |
| normalize=True, | |
| return_mask=self.use_segments, | |
| return_keypoint=self.use_keypoints, | |
| batch_idx=True, | |
| mask_ratio=hyp.mask_ratio, | |
| mask_overlap=hyp.overlap_mask, | |
| ) | |
| ) | |
| return transforms | |
| class RTDETRValidator(DetectionValidator): | |
| """ | |
| RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for | |
| the RT-DETR (Real-Time DETR) object detection model. | |
| The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for | |
| post-processing, and updates evaluation metrics accordingly. | |
| Example: | |
| ```python | |
| from ultralytics.models.rtdetr import RTDETRValidator | |
| args = dict(model='rtdetr-l.pt', data='coco8.yaml') | |
| validator = RTDETRValidator(args=args) | |
| validator() | |
| ``` | |
| Note: | |
| For further details on the attributes and methods, refer to the parent DetectionValidator class. | |
| """ | |
| def build_dataset(self, img_path, mode="val", batch=None): | |
| """ | |
| Build an RTDETR Dataset. | |
| Args: | |
| img_path (str): Path to the folder containing images. | |
| mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
| batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
| """ | |
| return RTDETRDataset( | |
| img_path=img_path, | |
| imgsz=self.args.imgsz, | |
| batch_size=batch, | |
| augment=False, # no augmentation | |
| hyp=self.args, | |
| rect=False, # no rect | |
| cache=self.args.cache or None, | |
| prefix=colorstr(f"{mode}: "), | |
| data=self.data, | |
| ) | |
| def postprocess(self, preds): | |
| """Apply Non-maximum suppression to prediction outputs.""" | |
| if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference | |
| preds = [preds, None] | |
| bs, _, nd = preds[0].shape | |
| bboxes, scores = preds[0].split((4, nd - 4), dim=-1) | |
| bboxes *= self.args.imgsz | |
| outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs | |
| for i, bbox in enumerate(bboxes): # (300, 4) | |
| bbox = ops.xywh2xyxy(bbox) | |
| score, cls = scores[i].max(-1) # (300, ) | |
| # Do not need threshold for evaluation as only got 300 boxes here | |
| # idx = score > self.args.conf | |
| pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter | |
| # Sort by confidence to correctly get internal metrics | |
| pred = pred[score.argsort(descending=True)] | |
| outputs[i] = pred # [idx] | |
| return outputs | |
| def _prepare_batch(self, si, batch): | |
| """Prepares a batch for training or inference by applying transformations.""" | |
| idx = batch["batch_idx"] == si | |
| cls = batch["cls"][idx].squeeze(-1) | |
| bbox = batch["bboxes"][idx] | |
| ori_shape = batch["ori_shape"][si] | |
| imgsz = batch["img"].shape[2:] | |
| ratio_pad = batch["ratio_pad"][si] | |
| if len(cls): | |
| bbox = ops.xywh2xyxy(bbox) # target boxes | |
| bbox[..., [0, 2]] *= ori_shape[1] # native-space pred | |
| bbox[..., [1, 3]] *= ori_shape[0] # native-space pred | |
| return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad} | |
| def _prepare_pred(self, pred, pbatch): | |
| """Prepares and returns a batch with transformed bounding boxes and class labels.""" | |
| predn = pred.clone() | |
| predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred | |
| predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred | |
| return predn.float() | |