File size: 5,898 Bytes
68bc6e3
 
 
 
dac59de
bea27d1
 
68bc6e3
676a9c3
 
 
68bc6e3
 
64f514c
68bc6e3
71383c2
492cf8f
 
503ef67
 
492cf8f
 
 
 
 
347bb62
492cf8f
 
 
 
 
 
71383c2
 
492cf8f
71383c2
 
3dfb2f9
eab8699
347bb62
3dfb2f9
 
eab8699
64f514c
eab8699
64f514c
eab8699
 
71383c2
3dfb2f9
68bc6e3
492cf8f
68bc6e3
 
 
 
dac59de
68bc6e3
 
 
 
 
 
 
71383c2
f9b272a
68bc6e3
 
 
 
 
 
3dfb2f9
71383c2
68bc6e3
 
4dbbaff
68bc6e3
 
 
 
3dfb2f9
68bc6e3
fdf14cf
 
 
f9b272a
68bc6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f08a00
68bc6e3
 
 
 
 
 
 
 
 
 
 
 
492cf8f
 
 
 
 
 
68bc6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbbaff
 
 
 
 
 
 
68bc6e3
 
 
 
4dbbaff
68bc6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71383c2
68bc6e3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
# from diffusers import SanaPipeline, StableDiffusion3Pipeline, FluxPipeline
from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline
import torch
import os
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"

device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16

MODEL_OPTIONS = {
    "SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium",
    "SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium",
    "SiD-Flow-SD3.5-medium": "YGu1998/SiD-Flow-SD3.5-medium",
    "SiDA-Flow-SD3.5-medium": "YGu1998/SiDA-Flow-SD3.5-medium",
    "SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large",
    "SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large",
    "SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res",
    "SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res",
    "SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res",
    "SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res",
    "SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res",
    "SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res",
    "SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res",
    "SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res",
    "SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res",
    "SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res",
}


def load_model(model_choice):
    model_repo_id = MODEL_OPTIONS[model_choice]
    time_scale = 1000.0
    if "Sana" in model_choice:
        pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16)
        if "Sprint" in model_choice:
            time_scale = 1.0
    elif "SD3" in model_choice:
        pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    elif "Flux" in model_choice:
        pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    else:
        raise ValueError(f"Unknown model type for: {model_choice}")
    pipe = pipe.to(device)
    return pipe, time_scale


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    seed,
    randomize_seed,
    width,
    height,
    num_inference_steps,
    model_choice,
    progress=gr.Progress(track_tqdm=False),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    pipe, time_scale = load_model(model_choice)

    image = pipe(
        prompt=prompt,
        guidance_scale=1,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        time_scale=time_scale,
    ).images[0]
    
    pipe.maybe_free_model_hooks()
    del pipe
    torch.cuda.empty_cache()

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # SiD-DiT demo")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        model_choice = gr.Dropdown(
            label="Model Choice",
            choices=list(MODEL_OPTIONS.keys()),
            value="SiD-Flow-SD3-medium",
        )

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                # guidance_scale = gr.Slider(
                #     label="Guidance scale",
                #     minimum=0.0,
                #     maximum=10.0,
                #     step=0.1,
                #     value=0.0,  # Replace with defaults that work for your model
                # )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=2,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            num_inference_steps,
            model_choice,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()