File size: 5,898 Bytes
68bc6e3 dac59de bea27d1 68bc6e3 676a9c3 68bc6e3 64f514c 68bc6e3 71383c2 492cf8f 503ef67 492cf8f 347bb62 492cf8f 71383c2 492cf8f 71383c2 3dfb2f9 eab8699 347bb62 3dfb2f9 eab8699 64f514c eab8699 64f514c eab8699 71383c2 3dfb2f9 68bc6e3 492cf8f 68bc6e3 dac59de 68bc6e3 71383c2 f9b272a 68bc6e3 3dfb2f9 71383c2 68bc6e3 4dbbaff 68bc6e3 3dfb2f9 68bc6e3 fdf14cf f9b272a 68bc6e3 1f08a00 68bc6e3 492cf8f 68bc6e3 4dbbaff 68bc6e3 4dbbaff 68bc6e3 71383c2 68bc6e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import SanaPipeline, StableDiffusion3Pipeline, FluxPipeline
from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline
import torch
import os
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
MODEL_OPTIONS = {
"SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium",
"SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium",
"SiD-Flow-SD3.5-medium": "YGu1998/SiD-Flow-SD3.5-medium",
"SiDA-Flow-SD3.5-medium": "YGu1998/SiDA-Flow-SD3.5-medium",
"SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large",
"SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large",
"SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res",
"SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res",
"SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res",
"SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res",
"SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res",
"SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res",
"SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res",
"SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res",
"SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res",
"SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res",
}
def load_model(model_choice):
model_repo_id = MODEL_OPTIONS[model_choice]
time_scale = 1000.0
if "Sana" in model_choice:
pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16)
if "Sprint" in model_choice:
time_scale = 1.0
elif "SD3" in model_choice:
pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
elif "Flux" in model_choice:
pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
else:
raise ValueError(f"Unknown model type for: {model_choice}")
pipe = pipe.to(device)
return pipe, time_scale
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps,
model_choice,
progress=gr.Progress(track_tqdm=False),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe, time_scale = load_model(model_choice)
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
time_scale=time_scale,
).images[0]
pipe.maybe_free_model_hooks()
del pipe
torch.cuda.empty_cache()
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SiD-DiT demo")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
model_choice = gr.Dropdown(
label="Model Choice",
choices=list(MODEL_OPTIONS.keys()),
value="SiD-Flow-SD3-medium",
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=4,
step=1,
value=2, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
num_inference_steps,
model_choice,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|