|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
|
|
import torch |
|
|
from transformers import ( |
|
|
CLIPTextModelWithProjection, |
|
|
CLIPTokenizer, |
|
|
SiglipImageProcessor, |
|
|
SiglipVisionModel, |
|
|
T5EncoderModel, |
|
|
T5TokenizerFast, |
|
|
) |
|
|
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin |
|
|
from diffusers.models.autoencoders import AutoencoderKL |
|
|
from diffusers.models.transformers import SD3Transformer2DModel |
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
is_torch_xla_available, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from .pipeline_output import SiDPipelineOutput |
|
|
|
|
|
|
|
|
if is_torch_xla_available(): |
|
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
XLA_AVAILABLE = True |
|
|
else: |
|
|
XLA_AVAILABLE = False |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
def calculate_shift( |
|
|
image_seq_len, |
|
|
base_seq_len: int = 256, |
|
|
max_seq_len: int = 4096, |
|
|
base_shift: float = 0.5, |
|
|
max_shift: float = 1.15, |
|
|
): |
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) |
|
|
b = base_shift - m * base_seq_len |
|
|
mu = image_seq_len * m + b |
|
|
return mu |
|
|
|
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
sigmas: Optional[List[float]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
|
must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
|
`num_inference_steps` and `sigmas` must be `None`. |
|
|
sigmas (`List[float]`, *optional*): |
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None and sigmas is not None: |
|
|
raise ValueError( |
|
|
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" |
|
|
) |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set( |
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys() |
|
|
) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
elif sigmas is not None: |
|
|
accept_sigmas = "sigmas" in set( |
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys() |
|
|
) |
|
|
if not accept_sigmas: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
class SiDSD3Pipeline( |
|
|
DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin |
|
|
): |
|
|
r""" |
|
|
Args: |
|
|
transformer ([`SD3Transformer2DModel`]): |
|
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
|
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, |
|
|
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` |
|
|
as its dimension. |
|
|
text_encoder_2 ([`CLIPTextModelWithProjection`]): |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
|
specifically the |
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
|
variant. |
|
|
text_encoder_3 ([`T5EncoderModel`]): |
|
|
Frozen text-encoder. Stable Diffusion 3 uses |
|
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
|
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
|
tokenizer (`CLIPTokenizer`): |
|
|
Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
tokenizer_2 (`CLIPTokenizer`): |
|
|
Second Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
tokenizer_3 (`T5TokenizerFast`): |
|
|
Tokenizer of class |
|
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
|
image_encoder (`SiglipVisionModel`, *optional*): |
|
|
Pre-trained Vision Model for IP Adapter. |
|
|
feature_extractor (`SiglipImageProcessor`, *optional*): |
|
|
Image processor for IP Adapter. |
|
|
""" |
|
|
|
|
|
model_cpu_offload_seq = ( |
|
|
"text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae" |
|
|
) |
|
|
_optional_components = ["image_encoder", "feature_extractor"] |
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "pooled_prompt_embeds"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
transformer: SD3Transformer2DModel, |
|
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
|
vae: AutoencoderKL, |
|
|
text_encoder: CLIPTextModelWithProjection, |
|
|
tokenizer: CLIPTokenizer, |
|
|
text_encoder_2: CLIPTextModelWithProjection, |
|
|
tokenizer_2: CLIPTokenizer, |
|
|
text_encoder_3: T5EncoderModel, |
|
|
tokenizer_3: T5TokenizerFast, |
|
|
image_encoder: SiglipVisionModel = None, |
|
|
feature_extractor: SiglipImageProcessor = None, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.register_modules( |
|
|
vae=vae, |
|
|
text_encoder=text_encoder, |
|
|
text_encoder_2=text_encoder_2, |
|
|
text_encoder_3=text_encoder_3, |
|
|
tokenizer=tokenizer, |
|
|
tokenizer_2=tokenizer_2, |
|
|
tokenizer_3=tokenizer_3, |
|
|
transformer=transformer, |
|
|
scheduler=scheduler, |
|
|
image_encoder=image_encoder, |
|
|
feature_extractor=feature_extractor, |
|
|
) |
|
|
self.vae_scale_factor = ( |
|
|
2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
if getattr(self, "vae", None) |
|
|
else 8 |
|
|
) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
self.tokenizer_max_length = ( |
|
|
self.tokenizer.model_max_length |
|
|
if hasattr(self, "tokenizer") and self.tokenizer is not None |
|
|
else 77 |
|
|
) |
|
|
self.default_sample_size = ( |
|
|
self.transformer.config.sample_size |
|
|
if hasattr(self, "transformer") and self.transformer is not None |
|
|
else 128 |
|
|
) |
|
|
self.patch_size = ( |
|
|
self.transformer.config.patch_size |
|
|
if hasattr(self, "transformer") and self.transformer is not None |
|
|
else 2 |
|
|
) |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
max_sequence_length: int = 256, |
|
|
device: Optional[torch.device] = None, |
|
|
dtype: Optional[torch.dtype] = None, |
|
|
): |
|
|
device = device or self._execution_device |
|
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
if self.text_encoder_3 is None: |
|
|
return torch.zeros( |
|
|
( |
|
|
batch_size * num_images_per_prompt, |
|
|
self.tokenizer_max_length, |
|
|
self.transformer.config.joint_attention_dim, |
|
|
), |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
text_inputs = self.tokenizer_3( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=max_sequence_length, |
|
|
truncation=True, |
|
|
add_special_tokens=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = self.tokenizer_3( |
|
|
prompt, padding="longest", return_tensors="pt" |
|
|
).input_ids |
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
|
text_input_ids, untruncated_ids |
|
|
): |
|
|
removed_text = self.tokenizer_3.batch_decode( |
|
|
untruncated_ids[:, self.tokenizer_max_length - 1 : -1] |
|
|
) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
|
f" {max_sequence_length} tokens: {removed_text}" |
|
|
) |
|
|
|
|
|
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] |
|
|
|
|
|
dtype = self.text_encoder_3.dtype |
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view( |
|
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
|
) |
|
|
|
|
|
return prompt_embeds |
|
|
|
|
|
def _get_clip_prompt_embeds( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
num_images_per_prompt: int = 1, |
|
|
device: Optional[torch.device] = None, |
|
|
clip_skip: Optional[int] = None, |
|
|
clip_model_index: int = 0, |
|
|
): |
|
|
device = device or self._execution_device |
|
|
|
|
|
clip_tokenizers = [self.tokenizer, self.tokenizer_2] |
|
|
clip_text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
|
|
tokenizer = clip_tokenizers[clip_model_index] |
|
|
text_encoder = clip_text_encoders[clip_model_index] |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
batch_size = len(prompt) |
|
|
|
|
|
text_inputs = tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer_max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = tokenizer( |
|
|
prompt, padding="longest", return_tensors="pt" |
|
|
).input_ids |
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
|
text_input_ids, untruncated_ids |
|
|
): |
|
|
removed_text = tokenizer.batch_decode( |
|
|
untruncated_ids[:, self.tokenizer_max_length - 1 : -1] |
|
|
) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
|
) |
|
|
prompt_embeds = text_encoder( |
|
|
text_input_ids.to(device), output_hidden_states=True |
|
|
) |
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
|
|
|
|
if clip_skip is None: |
|
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
else: |
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view( |
|
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
|
) |
|
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
pooled_prompt_embeds = pooled_prompt_embeds.view( |
|
|
batch_size * num_images_per_prompt, -1 |
|
|
) |
|
|
|
|
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
prompt_2: Union[str, List[str]], |
|
|
prompt_3: Union[str, List[str]], |
|
|
device: Optional[torch.device] = None, |
|
|
num_images_per_prompt: int = 1, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
clip_skip: Optional[int] = None, |
|
|
max_sequence_length: int = 256, |
|
|
): |
|
|
r""" |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
prompt to be encoded |
|
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
|
used in all text-encoders |
|
|
prompt_3 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is |
|
|
used in all text-encoders |
|
|
device: (`torch.device`): |
|
|
torch device |
|
|
num_images_per_prompt (`int`): |
|
|
number of images that should be generated per prompt |
|
|
do_classifier_free_guidance (`bool`): |
|
|
whether to use classifier free guidance or not |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
|
negative_prompt_3 (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and |
|
|
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
|
provided, text embeddings will be generated from `prompt` input argument. |
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
|
argument. |
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
|
input argument. |
|
|
clip_skip (`int`, *optional*): |
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
lora_scale (`float`, *optional*): |
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
|
""" |
|
|
device = device or self._execution_device |
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
if prompt is not None: |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
if prompt_embeds is None: |
|
|
prompt_2 = prompt_2 or prompt |
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_3 = prompt_3 or prompt |
|
|
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 |
|
|
|
|
|
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( |
|
|
prompt=prompt, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
clip_skip=clip_skip, |
|
|
clip_model_index=0, |
|
|
) |
|
|
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( |
|
|
prompt=prompt_2, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
clip_skip=clip_skip, |
|
|
clip_model_index=1, |
|
|
) |
|
|
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) |
|
|
|
|
|
t5_prompt_embed = self._get_t5_prompt_embeds( |
|
|
prompt=prompt_3, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
clip_prompt_embeds = torch.nn.functional.pad( |
|
|
clip_prompt_embeds, |
|
|
(0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]), |
|
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) |
|
|
pooled_prompt_embeds = torch.cat( |
|
|
[pooled_prompt_embed, pooled_prompt_2_embed], dim=-1 |
|
|
) |
|
|
|
|
|
return ( |
|
|
prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
) |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
prompt_2, |
|
|
prompt_3, |
|
|
height, |
|
|
width, |
|
|
negative_prompt=None, |
|
|
negative_prompt_2=None, |
|
|
negative_prompt_3=None, |
|
|
prompt_embeds=None, |
|
|
negative_prompt_embeds=None, |
|
|
pooled_prompt_embeds=None, |
|
|
negative_pooled_prompt_embeds=None, |
|
|
callback_on_step_end_tensor_inputs=None, |
|
|
max_sequence_length=None, |
|
|
): |
|
|
if ( |
|
|
height % (self.vae_scale_factor * self.patch_size) != 0 |
|
|
or width % (self.vae_scale_factor * self.patch_size) != 0 |
|
|
): |
|
|
raise ValueError( |
|
|
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}." |
|
|
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}." |
|
|
) |
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
|
k in self._callback_tensor_inputs |
|
|
for k in callback_on_step_end_tensor_inputs |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt_3 is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and ( |
|
|
not isinstance(prompt, str) and not isinstance(prompt, list) |
|
|
): |
|
|
raise ValueError( |
|
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
|
) |
|
|
elif prompt_2 is not None and ( |
|
|
not isinstance(prompt_2, str) and not isinstance(prompt_2, list) |
|
|
): |
|
|
raise ValueError( |
|
|
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" |
|
|
) |
|
|
elif prompt_3 is not None and ( |
|
|
not isinstance(prompt_3, str) and not isinstance(prompt_3, list) |
|
|
): |
|
|
raise ValueError( |
|
|
f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}" |
|
|
) |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
elif negative_prompt_3 is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
|
) |
|
|
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
|
) |
|
|
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
|
raise ValueError( |
|
|
f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}" |
|
|
) |
|
|
|
|
|
def prepare_latents( |
|
|
self, |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
dtype, |
|
|
device, |
|
|
generator, |
|
|
latents=None, |
|
|
): |
|
|
if latents is not None: |
|
|
return latents.to(device=device, dtype=dtype) |
|
|
|
|
|
shape = ( |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
int(height) // self.vae_scale_factor, |
|
|
int(width) // self.vae_scale_factor, |
|
|
) |
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
|
raise ValueError( |
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
|
) |
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
return latents |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def skip_guidance_layers(self): |
|
|
return self._skip_guidance_layers |
|
|
|
|
|
@property |
|
|
def clip_skip(self): |
|
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
return self._guidance_scale > 1 |
|
|
|
|
|
@property |
|
|
def joint_attention_kwargs(self): |
|
|
return self._joint_attention_kwargs |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
@property |
|
|
def interrupt(self): |
|
|
return self._interrupt |
|
|
|
|
|
|
|
|
|
|
|
def enable_sequential_cpu_offload(self, *args, **kwargs): |
|
|
if ( |
|
|
self.image_encoder is not None |
|
|
and "image_encoder" not in self._exclude_from_cpu_offload |
|
|
): |
|
|
logger.warning( |
|
|
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses " |
|
|
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling " |
|
|
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`." |
|
|
) |
|
|
|
|
|
super().enable_sequential_cpu_offload(*args, **kwargs) |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
|
prompt_3: Optional[Union[str, List[str]]] = None, |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
num_inference_steps: int = 28, |
|
|
guidance_scale: float = 1.0, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.FloatTensor] = None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
max_sequence_length: int = 256, |
|
|
use_sd3_shift: bool = False, |
|
|
noise_type: str = "fresh", |
|
|
time_scale: float = 1000.0, |
|
|
): |
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
prompt_2, |
|
|
prompt_3, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._interrupt = False |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
( |
|
|
prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
) = self.encode_prompt( |
|
|
prompt, |
|
|
prompt_2, |
|
|
prompt_3, |
|
|
prompt_embeds=prompt_embeds, |
|
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
|
latents = self.prepare_latents( |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
D_x = torch.zeros_like(latents).to(latents.device) |
|
|
|
|
|
initial_latents = latents.clone() if noise_type == 'fixed' else None |
|
|
for i in range(num_inference_steps): |
|
|
if noise_type == "fresh": |
|
|
noise = ( |
|
|
latents if i == 0 else torch.randn_like(latents).to(latents.device) |
|
|
) |
|
|
elif noise_type == "ddim": |
|
|
noise = ( |
|
|
latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach() |
|
|
) |
|
|
elif noise_type == "fixed": |
|
|
noise = initial_latents |
|
|
else: |
|
|
raise ValueError(f"Unknown noise_type: {noise_type}") |
|
|
|
|
|
|
|
|
init_timesteps = 999 |
|
|
scalar_t = float(init_timesteps) * ( |
|
|
1.0 - float(i) / float(num_inference_steps) |
|
|
) |
|
|
t_val = scalar_t / 999.0 |
|
|
|
|
|
if use_sd3_shift: |
|
|
shift = 3.0 |
|
|
t_val = shift * t_val / (1 + (shift - 1) * t_val) |
|
|
|
|
|
t = torch.full( |
|
|
(latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype |
|
|
) |
|
|
t_flattern = t.flatten() |
|
|
if t.numel() > 1: |
|
|
t = t.view(-1, 1, 1, 1) |
|
|
|
|
|
latents = (1.0 - t) * D_x + t * noise |
|
|
latent_model_input = latents |
|
|
|
|
|
flow_pred = self.transformer( |
|
|
hidden_states=latent_model_input, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
|
|
|
pooled_projections=pooled_prompt_embeds, |
|
|
timestep=time_scale * t_flattern, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
D_x = latents - ( |
|
|
t * flow_pred |
|
|
if torch.numel(t) == 1 |
|
|
else t.view(-1, 1, 1, 1) * flow_pred |
|
|
) |
|
|
|
|
|
|
|
|
image = self.vae.decode( |
|
|
(D_x / self.vae.config.scaling_factor) + self.vae.config.shift_factor, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return SiDPipelineOutput(images=image) |
|
|
|