# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import html import inspect import re import urllib.parse as ul import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.image_processor import PixArtImageProcessor from diffusers.loaders import SanaLoraLoaderMixin from diffusers.models import AutoencoderDC, SanaTransformer2DModel from diffusers.schedulers import DPMSolverMultistepScheduler from diffusers.utils import ( BACKENDS_MAPPING, USE_PEFT_BACKEND, is_bs4_available, is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import get_device, is_torch_version, randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import ( ASPECT_RATIO_512_BIN, ASPECT_RATIO_1024_BIN, ) from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN from .pipeline_output import SiDPipelineOutput if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy ASPECT_RATIO_4096_BIN = { "0.25": [2048.0, 8192.0], "0.26": [2048.0, 7936.0], "0.27": [2048.0, 7680.0], "0.28": [2048.0, 7424.0], "0.32": [2304.0, 7168.0], "0.33": [2304.0, 6912.0], "0.35": [2304.0, 6656.0], "0.4": [2560.0, 6400.0], "0.42": [2560.0, 6144.0], "0.48": [2816.0, 5888.0], "0.5": [2816.0, 5632.0], "0.52": [2816.0, 5376.0], "0.57": [3072.0, 5376.0], "0.6": [3072.0, 5120.0], "0.68": [3328.0, 4864.0], "0.72": [3328.0, 4608.0], "0.78": [3584.0, 4608.0], "0.82": [3584.0, 4352.0], "0.88": [3840.0, 4352.0], "0.94": [3840.0, 4096.0], "1.0": [4096.0, 4096.0], "1.07": [4096.0, 3840.0], "1.13": [4352.0, 3840.0], "1.21": [4352.0, 3584.0], "1.29": [4608.0, 3584.0], "1.38": [4608.0, 3328.0], "1.46": [4864.0, 3328.0], "1.67": [5120.0, 3072.0], "1.75": [5376.0, 3072.0], "2.0": [5632.0, 2816.0], "2.09": [5888.0, 2816.0], "2.4": [6144.0, 2560.0], "2.5": [6400.0, 2560.0], "2.89": [6656.0, 2304.0], "3.0": [6912.0, 2304.0], "3.11": [7168.0, 2304.0], "3.62": [7424.0, 2048.0], "3.75": [7680.0, 2048.0], "3.88": [7936.0, 2048.0], "4.0": [8192.0, 2048.0], } EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import SanaPipeline >>> pipe = SanaPipeline.from_pretrained( ... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32 ... ) >>> pipe.to("cuda") >>> pipe.text_encoder.to(torch.bfloat16) >>> pipe.transformer = pipe.transformer.to(torch.bfloat16) >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0] >>> image[0].save("output.png") ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError( "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" ) if timesteps is not None: accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class SiDSanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin): r""" Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). """ # fmt: off bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}") # fmt: on model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast], text_encoder: Gemma2PreTrainedModel, vae: AutoencoderDC, transformer: SanaTransformer2DModel, scheduler: DPMSolverMultistepScheduler, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.encoder_block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 32 ) self.image_processor = PixArtImageProcessor( vae_scale_factor=self.vae_scale_factor ) def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def _get_gemma_prompt_embeds( self, prompt: Union[str, List[str]], device: torch.device, dtype: torch.dtype, clean_caption: bool = False, max_sequence_length: int = 300, complex_human_instruction: Optional[List[str]] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`, *optional*): torch device to place the resulting embeddings on clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): If `complex_human_instruction` is not empty, the function will use the complex Human instruction for the prompt. """ prompt = [prompt] if isinstance(prompt, str) else prompt if getattr(self, "tokenizer", None) is not None: self.tokenizer.padding_side = "right" prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) # prepare complex human instruction if not complex_human_instruction: max_length_all = max_sequence_length else: chi_prompt = "\n".join(complex_human_instruction) prompt = [chi_prompt + p for p in prompt] num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) max_length_all = num_chi_prompt_tokens + max_sequence_length - 2 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length_all, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=prompt_attention_mask ) prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device) return prompt_embeds, prompt_attention_mask def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, clean_caption: bool = False, max_sequence_length: int = 300, complex_human_instruction: Optional[List[str]] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): If `complex_human_instruction` is not empty, the function will use the complex Human instruction for the prompt. """ if device is None: device = self._execution_device if self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if getattr(self, "tokenizer", None) is not None: self.tokenizer.padding_side = "right" # See Section 3.1. of the paper. max_length = max_sequence_length select_index = [0] + list(range(-max_length + 1, 0)) if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds( prompt=prompt, device=device, dtype=dtype, clean_caption=clean_caption, max_sequence_length=max_sequence_length, complex_human_instruction=complex_human_instruction, ) prompt_embeds = prompt_embeds[:, select_index] prompt_attention_mask = prompt_attention_mask[:, select_index] bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1 ) prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = ( [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt ) negative_prompt_embeds, negative_prompt_attention_mask = ( self._get_gemma_prompt_embeds( prompt=negative_prompt, device=device, dtype=dtype, clean_caption=clean_caption, max_sequence_length=max_sequence_length, complex_human_instruction=False, ) ) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to( dtype=dtype, device=device ) negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt, 1 ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1 ) negative_prompt_attention_mask = negative_prompt_attention_mask.view( bs_embed, -1 ) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( num_images_per_prompt, 1 ) else: negative_prompt_embeds = None negative_prompt_attention_mask = None if self.text_encoder is not None: if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_on_step_end_tensor_inputs=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 32 != 0 or width % 32 != 0: raise ValueError( f"`height` and `width` have to be divisible by 32 but are {height} and {width}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError( "Must provide `prompt_attention_mask` when specifying `prompt_embeds`." ) if ( negative_prompt_embeds is not None and negative_prompt_attention_mask is None ): raise ValueError( "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning( BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") ) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning( BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") ) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip addresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub( r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption ) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub( self.bad_punct_regex, r" ", caption ) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub( r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption ) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub( r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption ) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents @property def guidance_scale(self): return self._guidance_scale @property def attention_kwargs(self): return self._attention_kwargs @property def do_classifier_free_guidance(self): return self._guidance_scale > 1.0 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, guidance_scale: float = 1.0, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, noise_type: str = "fresh", # 'fresh', 'ddim', 'fixed' time_scale: float = 1000.0, use_resolution_binning: bool = True, ): if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_4096_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_2048_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 16: aspect_ratio_bin = ASPECT_RATIO_512_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin( height, width, ratios=aspect_ratio_bin ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, prompt_embeds=prompt_embeds, prompt_attention_mask=prompt_attention_mask, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device ( prompt_embeds, prompt_attention_mask, _, _, ) = self.encode_prompt( prompt, prompt_embeds=prompt_embeds, prompt_attention_mask=prompt_attention_mask, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, ) # 3. Prepare latents num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 4. SiD sampling loop # Initialize D_x D_x = torch.zeros_like(latents).to(latents.device) # Use fixed noise for now (can be extended as needed) initial_latents = latents.clone() for i in range(num_inference_steps): if noise_type == "fresh": noise = ( latents if i == 0 else torch.randn_like(latents).to(latents.device) ) elif noise_type == "ddim": noise = ( latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach() ) elif noise_type == "fixed": noise = initial_latents # Use the initial, unmodified latents else: raise ValueError(f"Unknown noise_type: {noise_type}") # Compute t value, normalized to [0, 1] init_timesteps = 999 scalar_t = float(init_timesteps) * ( 1.0 - float(i) / float(num_inference_steps) ) t_val = scalar_t / 999.0 t = torch.full( (latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype ) t_flattern = t.flatten() if t.numel() > 1: t = t.view(-1, 1, 1, 1) latents = (1.0 - t) * D_x + t * noise latent_model_input = latents flow_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=time_scale * t_flattern, return_dict=False, )[0] D_x = latents - ( t * flow_pred if torch.numel(t) == 1 else t.view(-1, 1, 1, 1) * flow_pred ) # 5. Decode latent to image image = self.vae.decode( (D_x / self.vae.config.scaling_factor), return_dict=False, )[0] if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor( image, orig_height, orig_width ) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return SiDPipelineOutput(images=image)