Spaces:
Build error
Build error
| struct common_speculative { | |
| struct llama_context * ctx; | |
| struct common_sampler * smpl; | |
| llama_batch batch; | |
| llama_tokens prompt; | |
| }; | |
| struct common_speculative * common_speculative_init( | |
| struct llama_context * ctx_dft) { | |
| auto * result = new common_speculative { | |
| /* .ctx = */ ctx_dft, | |
| /* .smpl = */ nullptr, | |
| /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1), | |
| /* .prompt = */ {}, | |
| }; | |
| // TODO: optimize or pass from outside? | |
| { | |
| common_params_sampling params; | |
| params.no_perf = false; | |
| params.top_k = 40; | |
| params.top_p = 0.9; | |
| params.samplers = { | |
| COMMON_SAMPLER_TYPE_TOP_K, | |
| COMMON_SAMPLER_TYPE_TOP_P, | |
| COMMON_SAMPLER_TYPE_INFILL, | |
| }; | |
| result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); | |
| } | |
| { | |
| common_params_sampling params; | |
| params.no_perf = false; | |
| params.top_k = 10; | |
| params.samplers = { | |
| COMMON_SAMPLER_TYPE_TOP_K, | |
| }; | |
| result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); | |
| } | |
| return result; | |
| } | |
| void common_speculative_free(struct common_speculative * spec) { | |
| if (spec == nullptr) { | |
| return; | |
| } | |
| common_sampler_free(spec->smpl); | |
| llama_batch_free(spec->batch); | |
| delete spec; | |
| } | |
| bool common_speculative_are_compatible( | |
| const struct llama_context * ctx_tgt, | |
| const struct llama_context * ctx_dft) { | |
| const struct llama_model * model_tgt = llama_get_model(ctx_tgt); | |
| const struct llama_model * model_dft = llama_get_model(ctx_dft); | |
| const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt); | |
| const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft); | |
| const bool vocab_type_tgt = llama_vocab_type(vocab_tgt); | |
| LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt); | |
| const bool vocab_type_dft = llama_vocab_type(vocab_dft); | |
| LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft); | |
| if (vocab_type_tgt != vocab_type_dft) { | |
| LOG_ERR("%s: draft model vocab type must match target model to use speculation but " | |
| "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt); | |
| return false; | |
| } | |
| if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) || | |
| llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) || | |
| llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) || | |
| llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) { | |
| LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__); | |
| LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt)); | |
| LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft)); | |
| return false; | |
| } | |
| { | |
| const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt); | |
| const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft); | |
| const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft); | |
| if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { | |
| LOG_ERR("%s: draft model vocab must closely match target model to use speculation but " | |
| "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", | |
| __func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); | |
| return false; | |
| } | |
| for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { | |
| const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i); | |
| const char * token_text_dft = llama_vocab_get_text(vocab_dft, i); | |
| if (std::strcmp(token_text_tgt, token_text_dft) != 0) { | |
| LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but " | |
| "token %d content differs - target '%s', draft '%s'\n", __func__, i, | |
| common_token_to_piece(ctx_tgt, i).c_str(), | |
| common_token_to_piece(ctx_dft, i).c_str()); | |
| return false; | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| llama_tokens common_speculative_gen_draft( | |
| struct common_speculative * spec, | |
| struct common_speculative_params params, | |
| const llama_tokens & prompt_tgt, | |
| llama_token id_last) { | |
| auto & batch = spec->batch; | |
| auto & ctx = spec->ctx; | |
| auto & smpl = spec->smpl; | |
| auto & prompt = spec->prompt; | |
| int reuse_i = 0; | |
| int reuse_n = 0; | |
| const int n_ctx = llama_n_ctx(ctx) - params.n_draft; | |
| const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx); | |
| // reuse as much as possible from the old draft context | |
| // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt | |
| for (int i = 0; i < (int) prompt.size(); ++i) { | |
| int cur = 0; | |
| while (i_start + cur < (int) prompt_tgt.size() && | |
| i + cur < (int) prompt.size() && | |
| prompt_tgt[i_start + cur] == prompt[i + cur]) { | |
| cur++; | |
| } | |
| if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) { | |
| reuse_i = i; | |
| reuse_n = cur; | |
| } | |
| } | |
| LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size()); | |
| llama_tokens result; | |
| result.reserve(params.n_draft); | |
| if (reuse_n == 0) { | |
| llama_kv_cache_clear(ctx); | |
| prompt.clear(); | |
| } else { | |
| // this happens when a previous draft has been discarded (for example, due to being too small), but the | |
| // target model agreed with it. in this case, we simply pass back the previous results to save compute | |
| if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) { | |
| for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) { | |
| result.push_back(prompt[i]); | |
| if (params.n_draft <= (int) result.size()) { | |
| break; | |
| } | |
| } | |
| return result; | |
| } | |
| if (reuse_i > 0) { | |
| llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i); | |
| llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i); | |
| prompt.erase(prompt.begin(), prompt.begin() + reuse_i); | |
| } | |
| if (reuse_n < (int) prompt.size()) { | |
| llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1); | |
| prompt.erase(prompt.begin() + reuse_n, prompt.end()); | |
| } | |
| } | |
| // prepare a batch to evaluate any new tokens in the prompt | |
| common_batch_clear(batch); | |
| for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) { | |
| //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]); | |
| common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false); | |
| prompt.push_back(prompt_tgt[i]); | |
| } | |
| // we should rarely end-up here during normal decoding | |
| if (batch.n_tokens > 0) { | |
| //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str()); | |
| llama_decode(ctx, batch); | |
| } | |
| const llama_pos n_past = prompt.size(); | |
| LOG_DBG("%s: n_past = %d\n", __func__, n_past); | |
| common_batch_clear(batch); | |
| common_batch_add (batch, id_last, n_past, { 0 }, true); | |
| prompt.push_back(id_last); | |
| //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str()); | |
| llama_decode(ctx, batch); | |
| common_sampler_reset(smpl); | |
| // sample n_draft tokens from the draft model | |
| for (int i = 0; i < params.n_draft; ++i) { | |
| common_batch_clear(batch); | |
| common_sampler_sample(smpl, ctx, 0, true); | |
| const auto * cur_p = common_sampler_get_candidates(smpl); | |
| for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { | |
| LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", | |
| k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str()); | |
| } | |
| // add drafted token for each sequence | |
| const llama_token id = cur_p->data[0].id; | |
| // only collect very high-confidence draft tokens | |
| if (cur_p->data[0].p < params.p_min) { | |
| break; | |
| } | |
| common_sampler_accept(smpl, id, true); | |
| result.push_back(id); | |
| if (params.n_draft <= (int) result.size()) { | |
| break; | |
| } | |
| common_batch_add(batch, id, n_past + i + 1, { 0 }, true); | |
| // evaluate the drafted tokens on the draft model | |
| llama_decode(ctx, batch); | |
| prompt.push_back(id); | |
| } | |
| return result; | |
| } | |