Spaces:
Build error
Build error
| import Foundation | |
| import llama | |
| let arguments = CommandLine.arguments | |
| // Check that we have at least one argument (the model path) | |
| guard arguments.count > 1 else { | |
| print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") | |
| exit(1) | |
| } | |
| let modelPath: String = arguments[1] | |
| let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" | |
| let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 | |
| // total length of the sequences including the prompt | |
| let n_len: Int = 32 | |
| // init LLM | |
| llama_backend_init() | |
| defer { | |
| llama_backend_free() | |
| } | |
| let model_params = llama_model_default_params() | |
| guard let model = llama_model_load_from_file(modelPath.cString(using: .utf8), model_params) else { | |
| print("Failed to load model") | |
| exit(1) | |
| } | |
| defer { | |
| llama_model_free(model) | |
| } | |
| guard let vocab = llama_model_get_vocab(model) else { | |
| print("Failed to get vocab") | |
| exit(1) | |
| } | |
| var tokens = tokenize(text: prompt, add_bos: true) | |
| let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) | |
| var context_params = llama_context_default_params() | |
| context_params.n_ctx = n_kv_req | |
| context_params.n_batch = UInt32(max(n_len, n_parallel)) | |
| context_params.n_threads = 8 | |
| context_params.n_threads_batch = 8 | |
| let context = llama_init_from_model(model, context_params) | |
| guard context != nil else { | |
| print("Failed to initialize context") | |
| exit(1) | |
| } | |
| defer { | |
| llama_free(context) | |
| } | |
| var sparams = llama_sampler_chain_default_params() | |
| let smpl = llama_sampler_chain_init(sparams) | |
| guard smpl != nil else { | |
| print("Failed to initialize sampling") | |
| exit(1) | |
| } | |
| defer { | |
| llama_sampler_free(smpl) | |
| } | |
| llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40)); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1)); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4)); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234)); | |
| let n_ctx = llama_n_ctx(context) | |
| print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") | |
| if n_kv_req > n_ctx { | |
| print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req) | |
| exit(1) | |
| } | |
| var buffer: [CChar] = [] | |
| for id: llama_token in tokens { | |
| print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") | |
| } | |
| print("\n") | |
| var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1) | |
| defer { | |
| llama_batch_free(batch) | |
| } | |
| // evaluate the initial prompt | |
| batch.n_tokens = Int32(tokens.count) | |
| for (i, token) in tokens.enumerated() { | |
| batch.token[i] = token | |
| batch.pos[i] = Int32(i) | |
| batch.n_seq_id[i] = 1 | |
| // batch.seq_id[i][0] = 0 | |
| // TODO: is this the proper way to do this? | |
| if let seq_id = batch.seq_id[i] { | |
| seq_id[0] = 0 | |
| } | |
| batch.logits[i] = 0 | |
| } | |
| // llama_decode will output logits only for the last token of the prompt | |
| batch.logits[Int(batch.n_tokens) - 1] = 1 | |
| if llama_decode(context, batch) != 0 { | |
| print("llama_decode() failed") | |
| exit(1) | |
| } | |
| for i in 1 ..< n_parallel { | |
| llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) | |
| } | |
| if n_parallel > 1 { | |
| print("generating \(n_parallel) sequences ...\n") | |
| } | |
| var streams: [String] = .init(repeating: "", count: n_parallel) | |
| var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) | |
| var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) | |
| var n_cur = batch.n_tokens | |
| var n_decode = 0 | |
| let t_main_start = ggml_time_us() | |
| while n_cur <= n_len { | |
| // prepare the next batch | |
| batch.n_tokens = 0 | |
| // sample the next token for each parallel sequence / stream | |
| for i in 0 ..< n_parallel { | |
| if i_batch[i] < 0 { | |
| // the stream has already finished | |
| continue | |
| } | |
| let new_token_id = llama_sampler_sample(smpl, context, i_batch[i]) | |
| // is it an end of stream? -> mark the stream as finished | |
| if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len { | |
| i_batch[i] = -1 | |
| // print("") | |
| if n_parallel > 1 { | |
| print("stream \(i) finished at n_cur = \(n_cur)") | |
| } | |
| continue | |
| } | |
| let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" | |
| // if there is only one stream, we print immediately to stdout | |
| if n_parallel == 1 { | |
| print(nextStringPiece, terminator: "") | |
| } | |
| streams[i] += nextStringPiece | |
| // push this new token for next evaluation | |
| batch.token[Int(batch.n_tokens)] = new_token_id | |
| batch.pos[Int(batch.n_tokens)] = n_cur | |
| batch.n_seq_id[Int(batch.n_tokens)] = 1 | |
| if let seq_id = batch.seq_id[Int(batch.n_tokens)] { | |
| seq_id[0] = Int32(i) | |
| } | |
| batch.logits[Int(batch.n_tokens)] = 1 | |
| i_batch[i] = batch.n_tokens | |
| batch.n_tokens += 1 | |
| n_decode += 1 | |
| } | |
| // all streams are finished | |
| if batch.n_tokens == 0 { | |
| break | |
| } | |
| n_cur += 1 | |
| // evaluate the current batch with the transformer model | |
| if llama_decode(context, batch) != 0 { | |
| print("llama_decode() failed") | |
| exit(1) | |
| } | |
| } | |
| if n_parallel > 1 { | |
| print("\n") | |
| for (i, stream) in streams.enumerated() { | |
| print("sequence \(i):\n\n\(prompt)\(stream)\n") | |
| } | |
| } | |
| let t_main_end = ggml_time_us() | |
| print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n") | |
| llama_perf_sampler_print(smpl) | |
| llama_perf_context_print(context) | |
| private func tokenize(text: String, add_bos: Bool) -> [llama_token] { | |
| let utf8Count = text.utf8.count | |
| let n_tokens = utf8Count + (add_bos ? 1 : 0) | |
| let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens) | |
| let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false) | |
| var swiftTokens: [llama_token] = [] | |
| for i in 0 ..< tokenCount { | |
| swiftTokens.append(tokens[Int(i)]) | |
| } | |
| tokens.deallocate() | |
| return swiftTokens | |
| } | |
| private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { | |
| var result = [CChar](repeating: 0, count: 8) | |
| let nTokens = llama_token_to_piece(vocab, token, &result, Int32(result.count), 0, false) | |
| if nTokens < 0 { | |
| let actualTokensCount = -Int(nTokens) | |
| result = .init(repeating: 0, count: actualTokensCount) | |
| let check = llama_token_to_piece( | |
| vocab, | |
| token, | |
| &result, | |
| Int32(result.count), | |
| 0, | |
| false | |
| ) | |
| assert(check == actualTokensCount) | |
| } else { | |
| result.removeLast(result.count - Int(nTokens)) | |
| } | |
| if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { | |
| return utfString | |
| } else { | |
| buffer.append(contentsOf: result) | |
| let data = Data(buffer.map { UInt8(bitPattern: $0) }) | |
| if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer | |
| buffer = [] | |
| } | |
| guard let bufferString = String(data: data, encoding: .utf8) else { | |
| return nil | |
| } | |
| buffer = [] | |
| return bufferString | |
| } | |
| } | |