Spaces:
Build error
Build error
| /** | |
| * This the arbitrary data which will be passed to each callback. | |
| * Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor. | |
| */ | |
| struct callback_data { | |
| std::vector<uint8_t> data; | |
| }; | |
| static std::string ggml_ne_string(const ggml_tensor * t) { | |
| std::string str; | |
| for (int i = 0; i < GGML_MAX_DIMS; ++i) { | |
| str += std::to_string(t->ne[i]); | |
| if (i + 1 < GGML_MAX_DIMS) { | |
| str += ", "; | |
| } | |
| } | |
| return str; | |
| } | |
| static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { | |
| GGML_ASSERT(n > 0); | |
| float sum = 0; | |
| for (int64_t i3 = 0; i3 < ne[3]; i3++) { | |
| LOG(" [\n"); | |
| for (int64_t i2 = 0; i2 < ne[2]; i2++) { | |
| if (i2 == n && ne[2] > 2*n) { | |
| LOG(" ..., \n"); | |
| i2 = ne[2] - n; | |
| } | |
| LOG(" [\n"); | |
| for (int64_t i1 = 0; i1 < ne[1]; i1++) { | |
| if (i1 == n && ne[1] > 2*n) { | |
| LOG(" ..., \n"); | |
| i1 = ne[1] - n; | |
| } | |
| LOG(" ["); | |
| for (int64_t i0 = 0; i0 < ne[0]; i0++) { | |
| if (i0 == n && ne[0] > 2*n) { | |
| LOG("..., "); | |
| i0 = ne[0] - n; | |
| } | |
| size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; | |
| float v; | |
| if (type == GGML_TYPE_F16) { | |
| v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]); | |
| } else if (type == GGML_TYPE_F32) { | |
| v = *(float *) &data[i]; | |
| } else if (type == GGML_TYPE_I32) { | |
| v = (float) *(int32_t *) &data[i]; | |
| } else if (type == GGML_TYPE_I16) { | |
| v = (float) *(int16_t *) &data[i]; | |
| } else if (type == GGML_TYPE_I8) { | |
| v = (float) *(int8_t *) &data[i]; | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| LOG("%12.4f", v); | |
| sum += v; | |
| if (i0 < ne[0] - 1) LOG(", "); | |
| } | |
| LOG("],\n"); | |
| } | |
| LOG(" ],\n"); | |
| } | |
| LOG(" ]\n"); | |
| LOG(" sum = %f\n", sum); | |
| } | |
| } | |
| /** | |
| * GGML operations callback during the graph execution. | |
| * | |
| * @param t current tensor | |
| * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor | |
| * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection. | |
| * see ggml_backend_sched_eval_callback | |
| * @param user_data user data to pass at each call back | |
| * @return true to receive data or continue the graph, false otherwise | |
| */ | |
| static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) { | |
| auto * cb_data = (callback_data *) user_data; | |
| const struct ggml_tensor * src0 = t->src[0]; | |
| const struct ggml_tensor * src1 = t->src[1]; | |
| if (ask) { | |
| return true; // Always retrieve data | |
| } | |
| char src1_str[128] = {0}; | |
| if (src1) { | |
| snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str()); | |
| } | |
| LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, | |
| t->name, ggml_type_name(t->type), ggml_op_desc(t), | |
| src0->name, ggml_ne_string(src0).c_str(), | |
| src1 ? src1_str : "", | |
| ggml_ne_string(t).c_str()); | |
| // copy the data from the GPU memory if needed | |
| const bool is_host = ggml_backend_buffer_is_host(t->buffer); | |
| if (!is_host) { | |
| auto n_bytes = ggml_nbytes(t); | |
| cb_data->data.resize(n_bytes); | |
| ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes); | |
| } | |
| if (!ggml_is_quantized(t->type)) { | |
| uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data(); | |
| ggml_print_tensor(data, t->type, t->ne, t->nb, 3); | |
| } | |
| return true; | |
| } | |
| static bool run(llama_context * ctx, const common_params & params) { | |
| const llama_model * model = llama_get_model(ctx); | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| const bool add_bos = llama_vocab_get_add_bos(vocab); | |
| std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos); | |
| if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) { | |
| LOG_ERR("%s : failed to eval\n", __func__); | |
| return false; | |
| } | |
| return true; | |
| } | |
| int main(int argc, char ** argv) { | |
| callback_data cb_data; | |
| common_params params; | |
| if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) { | |
| return 1; | |
| } | |
| common_init(); | |
| llama_backend_init(); | |
| llama_numa_init(params.numa); | |
| // pass the callback to the backend scheduler | |
| // it will be executed for each node during the graph computation | |
| params.cb_eval = ggml_debug; | |
| params.cb_eval_user_data = &cb_data; | |
| params.warmup = false; | |
| // init | |
| common_init_result llama_init = common_init_from_params(params); | |
| llama_model * model = llama_init.model.get(); | |
| llama_context * ctx = llama_init.context.get(); | |
| if (model == nullptr || ctx == nullptr) { | |
| LOG_ERR("%s : failed to init\n", __func__); | |
| return 1; | |
| } | |
| // print system information | |
| { | |
| LOG_INF("\n"); | |
| LOG_INF("%s\n", common_params_get_system_info(params).c_str()); | |
| LOG_INF("\n"); | |
| } | |
| bool OK = run(ctx, params); | |
| if (!OK) { | |
| return 1; | |
| } | |
| LOG("\n"); | |
| llama_perf_context_print(ctx); | |
| llama_backend_free(); | |
| return 0; | |
| } | |