Spaces:
Build error
Build error
| struct quantize_stats_params { | |
| std::string model = DEFAULT_MODEL_PATH; | |
| bool verbose = false; | |
| bool per_layer_stats = false; | |
| bool print_histogram = false; | |
| bool reference = false; | |
| std::vector<std::string> include_layers; | |
| std::vector<std::string> exclude_layers; | |
| std::vector<enum ggml_type> include_types; | |
| }; | |
| constexpr size_t HISTOGRAM_BUCKETS = 150; | |
| constexpr double HISTOGRAM_RANGE = 0.03; | |
| struct error_stats { | |
| size_t num_samples; | |
| double total_error; | |
| double max_error; | |
| uint64_t error_histogram[HISTOGRAM_BUCKETS]; | |
| }; | |
| static void quantize_stats_print_usage(int /*argc*/, char ** argv) { | |
| quantize_stats_params params; | |
| fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "options:\n"); | |
| fprintf(stderr, " -h, --help show this help message and exit\n"); | |
| fprintf(stderr, " -m FNAME, --model FNAME\n"); | |
| fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); | |
| fprintf(stderr, " -r, --reference\n"); | |
| fprintf(stderr, " use reference implementation (default: false)\n"); | |
| fprintf(stderr, " -v, --verbose\n"); | |
| fprintf(stderr, " verbose output (default: false)\n"); | |
| fprintf(stderr, " -p, --per-layer-stats\n"); | |
| fprintf(stderr, " print stats per layer (default: false)\n"); | |
| fprintf(stderr, " --histogram\n"); | |
| fprintf(stderr, " print error histogram (default: false)\n"); | |
| fprintf(stderr, " -l LAYER, --include-layer LAYER\n"); | |
| fprintf(stderr, " only test layers matching pattern\n"); | |
| fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n"); | |
| fprintf(stderr, " exclude layers matching pattern\n"); | |
| fprintf(stderr, " -t TYPE, --type TYPE\n"); | |
| fprintf(stderr, " only test given type (q4_0, q4_1)\n"); | |
| fprintf(stderr, "\n"); | |
| } | |
| // Check if a layer is included/excluded by command line | |
| static bool layer_included(const quantize_stats_params & params, const std::string & layer) { | |
| for (const auto& excluded : params.exclude_layers) { | |
| if (std::regex_search(layer, std::regex(excluded))) { | |
| return false; | |
| } | |
| } | |
| for (const auto& included : params.include_layers) { | |
| if (std::regex_search(layer, std::regex(included))) { | |
| return true; | |
| } | |
| } | |
| return params.include_layers.empty(); | |
| } | |
| // Update error statistics given vectors with the before/after result of quantization | |
| static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) { | |
| for (int64_t i = 0; i < nelements; i++) { | |
| double diff = input[i] - output[i]; | |
| stats.total_error += diff * diff; | |
| stats.max_error = fmax(fabs(diff), stats.max_error); | |
| stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++; | |
| } | |
| stats.num_samples += nelements; | |
| } | |
| static void combine_error_stats(error_stats & into, const error_stats & from) { | |
| into.num_samples += from.num_samples; | |
| into.total_error += from.total_error; | |
| if (from.max_error > into.max_error) into.max_error = from.max_error; | |
| for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i]; | |
| } | |
| static double find_quantile(const error_stats & stats, double quantile) { | |
| double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0); | |
| double accum = 0; | |
| for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) { | |
| accum += stats.error_histogram[i]; | |
| if (accum >= sum*quantile) { | |
| return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; | |
| } | |
| } | |
| return INFINITY; | |
| } | |
| static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) { | |
| double rmse = sqrt(stats.total_error / (double) stats.num_samples); | |
| double median = find_quantile(stats, .5); | |
| double pct95 = find_quantile(stats, .95); | |
| printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median); | |
| if (print_histogram) { | |
| printf("Error distribution:\n"); | |
| for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) { | |
| double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; | |
| double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS; | |
| if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY; | |
| printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]); | |
| } | |
| } | |
| } | |
| // copied from ggml.h - verify that we can access this as a flat array | |
| static bool tensor_is_contiguous(const struct ggml_tensor * tensor) { | |
| static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
| return | |
| tensor->nb[0] == ggml_type_size(tensor->type) && | |
| tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && | |
| tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && | |
| tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; | |
| } | |
| static void test_roundtrip_on_chunk( | |
| const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference, | |
| float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats | |
| ) { | |
| if (layer->type == GGML_TYPE_F16) { | |
| for (int i = 0; i < chunk_size; i++) { | |
| input_scratch[i] = ggml_get_f32_1d(layer, i + offset); | |
| } | |
| } else { | |
| input_scratch = ggml_get_data_f32(layer) + offset; | |
| } | |
| if (use_reference) { | |
| qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size); | |
| } else { | |
| qfns_cpu.from_float(input_scratch, quantized_scratch, chunk_size); | |
| } | |
| qfns.to_float(quantized_scratch, output_scratch, chunk_size); | |
| update_error_stats(chunk_size, input_scratch, output_scratch, stats); | |
| } | |
| // Run quantization function for a single layer and update error stats | |
| static void test_roundtrip_on_layer( | |
| std::string & name, bool print_layer_stats, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference, | |
| const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch, | |
| std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0 | |
| ) { | |
| assert(tensor_is_contiguous(layer)); | |
| error_stats layer_error {}; | |
| uint64_t nelements = ggml_nelements(layer); | |
| float* input_scratch_ptr = nullptr; | |
| if (layer->type == GGML_TYPE_F16) { | |
| if (input_scratch.size() < nelements) input_scratch.resize(nelements); | |
| input_scratch_ptr = input_scratch.data(); | |
| } | |
| if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements); | |
| if (output_scratch.size() < nelements) output_scratch.resize(nelements); | |
| if (max_thread < 1) max_thread = std::thread::hardware_concurrency(); | |
| int chunk_size = 32*512; | |
| int num_chunks = (nelements + chunk_size - 1)/chunk_size; | |
| if (num_chunks < 2 || max_thread < 2) { | |
| test_roundtrip_on_chunk(layer, 0, nelements, qfns, qfns_cpu, use_reference, input_scratch_ptr, quantized_scratch.data(), | |
| output_scratch.data(), print_layer_stats ? layer_error : total_error); | |
| } else { | |
| auto & stats = print_layer_stats ? layer_error : total_error; | |
| std::mutex mutex; | |
| uint64_t counter = 0; | |
| auto compute = [&mutex, &counter, &stats, &qfns, &qfns_cpu, nelements, layer, use_reference, input_scratch_ptr, | |
| &quantized_scratch, &output_scratch, chunk_size] () { | |
| error_stats local_stats {}; | |
| while (true) { | |
| std::unique_lock<std::mutex> lock(mutex); | |
| uint64_t offset = counter; counter += chunk_size; | |
| if (offset >= nelements) { | |
| combine_error_stats(stats, local_stats); | |
| break; | |
| } | |
| lock.unlock(); | |
| uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset; | |
| test_roundtrip_on_chunk(layer, offset, chunk, qfns, qfns_cpu, use_reference, input_scratch_ptr + offset, | |
| quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats); | |
| } | |
| }; | |
| int nthread = std::min(num_chunks, max_thread); | |
| std::vector<std::thread> workers(nthread-1); | |
| for (auto& w : workers) w = std::thread(compute); | |
| compute(); | |
| for (auto& w : workers) w.join(); | |
| } | |
| if (print_layer_stats) { | |
| print_error_stats(name, layer_error, false); | |
| combine_error_stats(total_error, layer_error); | |
| } | |
| } | |
| int main(int argc, char ** argv) { | |
| ggml_time_init(); | |
| quantize_stats_params params; | |
| // read command line | |
| int max_thread = 0; | |
| bool invalid_param = false; | |
| std::string arg; | |
| for (int i = 1; i < argc; i++) { | |
| arg = argv[i]; | |
| if (arg == "-h" || arg == "--help") { | |
| quantize_stats_print_usage(argc, argv); | |
| exit(0); | |
| } else if (arg == "-r" || arg == "--reference") { | |
| params.reference = true; | |
| } else if (arg == "-v") { | |
| params.verbose = true; | |
| } else if (arg == "-p" || arg == "--per-layer-stats") { | |
| params.per_layer_stats = true; | |
| } else if (arg == "--histogram") { | |
| params.print_histogram = true; | |
| } else if (arg == "-m" || arg == "--model") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.model = argv[i]; | |
| } else if (arg == "-l" || arg == "--include-layer") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.include_layers.emplace_back(argv[i]); | |
| } else if (arg == "-L" || arg == "--exclude-layer") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.exclude_layers.emplace_back(argv[i]); | |
| } else if (arg == "-t" || arg == "--type") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| int j; | |
| for (j = 0; j < GGML_TYPE_COUNT; ++j) { | |
| const auto * name = ggml_type_name((ggml_type) j); | |
| if (name && strcmp(argv[i], name) == 0) break; | |
| } | |
| if (j < GGML_TYPE_COUNT) { | |
| params.include_types.push_back((ggml_type) j); | |
| } else { | |
| fprintf(stderr, "error: %s not in list of types\n", argv[i]); | |
| invalid_param = true; | |
| } | |
| } else if (arg == "-n" || arg == "--num-threads") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| max_thread = atoi(argv[i]); | |
| } else { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| quantize_stats_print_usage(argc, argv); | |
| return 1; | |
| } | |
| } | |
| if (invalid_param) { | |
| fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
| quantize_stats_print_usage(argc, argv); | |
| return 1; | |
| } | |
| print_build_info(); | |
| // load the model | |
| fprintf(stderr, "Loading model\n"); | |
| const int64_t t_main_start_us = ggml_time_us(); | |
| llama_model * model; | |
| llama_context * ctx; | |
| { | |
| auto mparams = llama_model_default_params(); | |
| mparams.use_mlock = false; | |
| model = llama_model_load_from_file(params.model.c_str(), mparams); | |
| if (model == NULL) { | |
| fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); | |
| return 1; | |
| } | |
| auto cparams = llama_context_default_params(); | |
| cparams.n_ctx = 256; | |
| ctx = llama_init_from_model(model, cparams); | |
| if (ctx == NULL) { | |
| fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); | |
| llama_model_free(model); | |
| return 1; | |
| } | |
| } | |
| const auto & tensors = llama_internal_get_tensor_map(ctx); | |
| // check layer tensors | |
| int included_layers = 0; | |
| int64_t max_nelements = 0; | |
| bool is_f16 = false; | |
| for (const auto & kv_tensor : tensors) { | |
| if (!layer_included(params, kv_tensor.first)) { | |
| continue; | |
| } | |
| if (params.verbose) { | |
| printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second)); | |
| } | |
| if (kv_tensor.second->type == GGML_TYPE_F16) { | |
| is_f16 = true; | |
| } else if (kv_tensor.second->type != GGML_TYPE_F32) { | |
| fprintf(stderr, "%s: error: Quantization should be tested with a float model, " | |
| "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type); | |
| llama_free(ctx); | |
| llama_model_free(model); | |
| return 1; | |
| } | |
| included_layers++; | |
| max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second)); | |
| } | |
| if (is_f16) { | |
| printf("note: source model is f16\n"); | |
| } | |
| printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements); | |
| // allocate scratch space | |
| std::vector<float> input_scratch; | |
| std::vector<char> quantized_scratch; | |
| std::vector<float> output_scratch; | |
| // loop throught quantization types | |
| for (int i = 0; i < GGML_TYPE_COUNT; i++) { | |
| const ggml_type type = (ggml_type) i; | |
| if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { | |
| continue; | |
| } | |
| const auto * qfns = ggml_get_type_traits(type); | |
| const auto * qfns_cpu = ggml_get_type_traits_cpu(type); | |
| if (qfns_cpu->from_float && qfns->to_float) { | |
| if (params.verbose) { | |
| printf("testing %s ...\n", ggml_type_name(type)); | |
| } | |
| ggml_quantize_init(type); | |
| error_stats global_stats {}; | |
| for (const auto & kv_tensor : tensors) { | |
| if (!layer_included(params, kv_tensor.first)) { | |
| continue; | |
| } | |
| if (params.verbose) { | |
| printf(" %s ...\n", kv_tensor.first.c_str()); | |
| } | |
| std::string layer_name { ggml_type_name(type) }; | |
| layer_name += "::" + kv_tensor.first; | |
| test_roundtrip_on_layer( | |
| layer_name, | |
| params.per_layer_stats, | |
| *qfns, *qfns_cpu, | |
| params.reference, | |
| kv_tensor.second, | |
| input_scratch, | |
| quantized_scratch, | |
| output_scratch, | |
| global_stats, | |
| max_thread | |
| ); | |
| } | |
| print_error_stats(ggml_type_name(type), global_stats, params.print_histogram); | |
| } | |
| } | |
| llama_free(ctx); | |
| llama_model_free(model); | |
| // report timing | |
| { | |
| const int64_t t_main_end_us = ggml_time_us(); | |
| printf("\n"); | |
| printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); | |
| } | |
| return 0; | |
| } | |