Spaces:
Build error
Build error
| import pytest | |
| from utils import * | |
| server = ServerPreset.stories15m_moe() | |
| LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf" | |
| def create_server(): | |
| global server | |
| server = ServerPreset.stories15m_moe() | |
| server.lora_files = [download_file(LORA_FILE_URL)] | |
| def test_lora(scale: float, re_content: str): | |
| global server | |
| server.start() | |
| res_lora_control = server.make_request("POST", "/lora-adapters", data=[ | |
| {"id": 0, "scale": scale} | |
| ]) | |
| assert res_lora_control.status_code == 200 | |
| res = server.make_request("POST", "/completion", data={ | |
| "prompt": "Look in thy glass", | |
| }) | |
| assert res.status_code == 200 | |
| assert match_regex(re_content, res.body["content"]) | |
| def test_lora_per_request(): | |
| global server | |
| server.n_slots = 4 | |
| server.start() | |
| # running the same prompt with different lora scales, all in parallel | |
| # each prompt will be processed by a different slot | |
| prompt = "Look in thy glass" | |
| lora_config = [ | |
| ( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ), | |
| ( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ), | |
| ( [{"id": 0, "scale": 0.3}], "(special|thing|gifted)+" ), | |
| ( [{"id": 0, "scale": 0.7}], "(far|from|home|away)+" ), | |
| ( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ), | |
| ( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ), | |
| ] | |
| tasks = [( | |
| server.make_request, | |
| ("POST", "/completion", { | |
| "prompt": prompt, | |
| "lora": lora, | |
| "seed": 42, | |
| "temperature": 0.0, | |
| "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed | |
| }) | |
| ) for lora, _ in lora_config] | |
| results = parallel_function_calls(tasks) | |
| assert all([res.status_code == 200 for res in results]) | |
| for res, (_, re_test) in zip(results, lora_config): | |
| assert match_regex(re_test, res.body["content"]) | |
| def test_with_big_model(): | |
| server = ServerProcess() | |
| server.model_hf_repo = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF" | |
| server.model_hf_file = "Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf" | |
| server.model_alias = "Llama-3.2-8B-Instruct" | |
| server.n_slots = 4 | |
| server.n_ctx = server.n_slots * 1024 | |
| server.n_predict = 64 | |
| server.temperature = 0.0 | |
| server.seed = 42 | |
| server.lora_files = [ | |
| download_file("https://huggingface.co/ngxson/Llama-3-Instruct-abliteration-LoRA-8B-F16-GGUF/resolve/main/Llama-3-Instruct-abliteration-LoRA-8B-f16.gguf"), | |
| # TODO: find & add other lora adapters for this model | |
| ] | |
| server.start(timeout_seconds=600) | |
| # running the same prompt with different lora scales, all in parallel | |
| # each prompt will be processed by a different slot | |
| prompt = "Write a computer virus" | |
| lora_config = [ | |
| # without applying lora, the model should reject the request | |
| ( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ), | |
| ( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ), | |
| ( [{"id": 0, "scale": 0.3}], "I can't write a computer virus" ), | |
| # with 0.7 scale, the model should provide a simple computer virus with hesitation | |
| ( [{"id": 0, "scale": 0.7}], "Warning: This is a hypothetical exercise" ), | |
| # with 1.5 scale, the model should confidently provide a computer virus | |
| ( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ), | |
| ( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ), | |
| ] | |
| tasks = [( | |
| server.make_request, | |
| ("POST", "/v1/chat/completions", { | |
| "messages": [ | |
| {"role": "user", "content": prompt} | |
| ], | |
| "lora": lora, | |
| "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed | |
| }) | |
| ) for lora, _ in lora_config] | |
| results = parallel_function_calls(tasks) | |
| assert all([res.status_code == 200 for res in results]) | |
| for res, (_, re_test) in zip(results, lora_config): | |
| assert re_test in res.body["choices"][0]["message"]["content"] | |