Spaces:
Build error
Build error
| // increase max payload length to allow use of larger context size | |
| // Change JSON_ASSERT from assert() to GGML_ASSERT: | |
| using json = nlohmann::ordered_json; | |
| template <typename T> | |
| static T json_value(const json & body, const std::string & key, const T & default_value) { | |
| // Fallback null to default value | |
| if (body.contains(key) && !body.at(key).is_null()) { | |
| try { | |
| return body.at(key); | |
| } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { | |
| LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name()); | |
| return default_value; | |
| } | |
| } else { | |
| return default_value; | |
| } | |
| } | |
| const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT); | |
| // | |
| // tokenizer and input processing utils | |
| // | |
| static bool json_is_array_of_numbers(const json & data) { | |
| if (data.is_array()) { | |
| for (const auto & e : data) { | |
| if (!e.is_number_integer()) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| return false; | |
| } | |
| // is array having BOTH numbers & strings? | |
| static bool json_is_array_of_mixed_numbers_strings(const json & data) { | |
| bool seen_string = false; | |
| bool seen_number = false; | |
| if (data.is_array()) { | |
| for (const auto & e : data) { | |
| seen_string |= e.is_string(); | |
| seen_number |= e.is_number_integer(); | |
| if (seen_number && seen_string) { | |
| return true; | |
| } | |
| } | |
| } | |
| return false; | |
| } | |
| // get value by path(key1 / key2) | |
| static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) { | |
| json result = json::object(); | |
| for (const std::string & path : paths) { | |
| json current = js; | |
| const auto keys = string_split<std::string>(path, /*separator*/ '/'); | |
| bool valid_path = true; | |
| for (const std::string & k : keys) { | |
| if (valid_path && current.is_object() && current.contains(k)) { | |
| current = current[k]; | |
| } else { | |
| valid_path = false; | |
| } | |
| } | |
| if (valid_path) { | |
| result[path] = current; | |
| } | |
| } | |
| return result; | |
| } | |
| /** | |
| * this handles 2 cases: | |
| * - only string, example: "string" | |
| * - mixed string and tokens, example: [12, 34, "string", 56, 78] | |
| */ | |
| static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { | |
| // If `add_bos` is true, we only add BOS, when json_prompt is a string, | |
| // or the first element of the json_prompt array is a string. | |
| llama_tokens prompt_tokens; | |
| if (json_prompt.is_array()) { | |
| bool first = true; | |
| for (const auto & p : json_prompt) { | |
| if (p.is_string()) { | |
| auto s = p.template get<std::string>(); | |
| llama_tokens p; | |
| if (first) { | |
| p = common_tokenize(vocab, s, add_special, parse_special); | |
| first = false; | |
| } else { | |
| p = common_tokenize(vocab, s, false, parse_special); | |
| } | |
| prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); | |
| } else { | |
| if (first) { | |
| first = false; | |
| } | |
| prompt_tokens.push_back(p.template get<llama_token>()); | |
| } | |
| } | |
| } else { | |
| auto s = json_prompt.template get<std::string>(); | |
| prompt_tokens = common_tokenize(vocab, s, add_special, parse_special); | |
| } | |
| return prompt_tokens; | |
| } | |
| /** | |
| * break the input "prompt" object into multiple prompt if needed, then tokenize them | |
| * this supports these cases: | |
| * - "prompt": "string" | |
| * - "prompt": [12, 34, 56] | |
| * - "prompt": [12, 34, "string", 56, 78] | |
| * and multiple prompts (multi-tasks): | |
| * - "prompt": ["string1", "string2"] | |
| * - "prompt": ["string1", [12, 34, 56]] | |
| * - "prompt": [[12, 34, 56], [78, 90, 12]] | |
| * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] | |
| */ | |
| static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { | |
| std::vector<llama_tokens> result; | |
| if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { | |
| // string or mixed | |
| result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special)); | |
| } else if (json_is_array_of_numbers(json_prompt)) { | |
| // array of tokens | |
| result.push_back(json_prompt.get<llama_tokens>()); | |
| } else if (json_prompt.is_array()) { | |
| // array of prompts | |
| result.reserve(json_prompt.size()); | |
| for (const auto & p : json_prompt) { | |
| if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { | |
| result.push_back(tokenize_mixed(vocab, p, add_special, parse_special)); | |
| } else if (json_is_array_of_numbers(p)) { | |
| // array of tokens | |
| result.push_back(p.get<llama_tokens>()); | |
| } else { | |
| throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); | |
| } | |
| } | |
| } else { | |
| throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); | |
| } | |
| if (result.empty()) { | |
| throw std::runtime_error("\"prompt\" must not be empty"); | |
| } | |
| return result; | |
| } | |
| // return the last index of character that can form a valid string | |
| // if the last character is potentially cut in half, return the index before the cut | |
| // if validate_utf8(text) == text.size(), then the whole text is valid utf8 | |
| static size_t validate_utf8(const std::string& text) { | |
| size_t len = text.size(); | |
| if (len == 0) return 0; | |
| // Check the last few bytes to see if a multi-byte character is cut off | |
| for (size_t i = 1; i <= 4 && i <= len; ++i) { | |
| unsigned char c = text[len - i]; | |
| // Check for start of a multi-byte sequence from the end | |
| if ((c & 0xE0) == 0xC0) { | |
| // 2-byte character start: 110xxxxx | |
| // Needs at least 2 bytes | |
| if (i < 2) return len - i; | |
| } else if ((c & 0xF0) == 0xE0) { | |
| // 3-byte character start: 1110xxxx | |
| // Needs at least 3 bytes | |
| if (i < 3) return len - i; | |
| } else if ((c & 0xF8) == 0xF0) { | |
| // 4-byte character start: 11110xxx | |
| // Needs at least 4 bytes | |
| if (i < 4) return len - i; | |
| } | |
| } | |
| // If no cut-off multi-byte character is found, return full length | |
| return len; | |
| } | |
| // | |
| // template utils | |
| // | |
| // format rerank task: [BOS]query[EOS][SEP]doc[EOS] | |
| static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) { | |
| llama_tokens result; | |
| result.reserve(doc.size() + query.size() + 4); | |
| result.push_back(llama_vocab_bos(vocab)); | |
| result.insert(result.end(), query.begin(), query.end()); | |
| result.push_back(llama_vocab_eos(vocab)); | |
| result.push_back(llama_vocab_sep(vocab)); | |
| result.insert(result.end(), doc.begin(), doc.end()); | |
| result.push_back(llama_vocab_eos(vocab)); | |
| return result; | |
| } | |
| // format infill task | |
| static llama_tokens format_infill( | |
| const llama_vocab * vocab, | |
| const json & input_prefix, | |
| const json & input_suffix, | |
| const json & input_extra, | |
| const int n_batch, | |
| const int n_predict, | |
| const int n_ctx, | |
| const bool spm_infill, | |
| const llama_tokens & tokens_prompt | |
| ) { | |
| // TODO: optimize this block by reducing memory allocations and movement | |
| // use FIM repo-level pattern: | |
| // ref: https://arxiv.org/pdf/2409.12186 | |
| // | |
| // [FIM_REP]myproject | |
| // [FIM_SEP]filename0 | |
| // extra chunk 0 | |
| // [FIM_SEP]filename1 | |
| // extra chunk 1 | |
| // ... | |
| // [FIM_SEP]filename | |
| // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt | |
| // | |
| llama_tokens extra_tokens; | |
| extra_tokens.reserve(n_ctx); | |
| auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false); | |
| auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false); | |
| if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) { | |
| // TODO: make project name an input | |
| static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false); | |
| extra_tokens.push_back(llama_vocab_fim_rep(vocab)); | |
| extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); | |
| } | |
| for (const auto & chunk : input_extra) { | |
| // { "text": string, "filename": string } | |
| const std::string text = json_value(chunk, "text", std::string()); | |
| const std::string filename = json_value(chunk, "filename", std::string("tmp")); | |
| if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { | |
| const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false); | |
| extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); | |
| extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); | |
| } else { | |
| // chunk separator in binary form to avoid confusing the AI | |
| static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; | |
| static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false); | |
| extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); | |
| } | |
| const auto chunk_tokens = common_tokenize(vocab, text, false, false); | |
| extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); | |
| } | |
| if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { | |
| // TODO: current filename | |
| static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false); | |
| extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); | |
| extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); | |
| } | |
| // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?) | |
| const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4)); | |
| const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size()))); | |
| SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); | |
| // fill the rest of the context with extra chunks | |
| const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); | |
| tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); | |
| tokens_suffix.resize(n_suffix_take); | |
| tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab)); | |
| tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); | |
| tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab)); | |
| auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; | |
| auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; | |
| if (llama_vocab_get_add_bos(vocab)) { | |
| embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab)); | |
| } | |
| SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); | |
| // put the extra context before the FIM prefix | |
| embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); | |
| embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); | |
| embd_inp.push_back(llama_vocab_fim_mid(vocab)); | |
| return embd_inp; | |
| } | |
| // Format given chat. If tmpl is empty, we take the template from model metadata | |
| inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) { | |
| std::vector<common_chat_msg> chat; | |
| for (size_t i = 0; i < messages.size(); ++i) { | |
| const auto & curr_msg = messages[i]; | |
| std::string role = json_value(curr_msg, "role", std::string("")); | |
| std::string content; | |
| if (curr_msg.contains("content")) { | |
| if (curr_msg["content"].is_string()) { | |
| content = curr_msg["content"].get<std::string>(); | |
| } else if (curr_msg["content"].is_array()) { | |
| for (const auto & part : curr_msg["content"]) { | |
| if (part.contains("text")) { | |
| content += "\n" + part["text"].get<std::string>(); | |
| } | |
| } | |
| } else { | |
| throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); | |
| } | |
| } else { | |
| throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); | |
| } | |
| chat.push_back({role, content, /* tool_calls= */ {}}); | |
| } | |
| const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false); | |
| LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str()); | |
| return formatted_chat; | |
| } | |
| // | |
| // base64 utils (TODO: move to common in the future) | |
| // | |
| static const std::string base64_chars = | |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
| "abcdefghijklmnopqrstuvwxyz" | |
| "0123456789+/"; | |
| static inline bool is_base64(uint8_t c) { | |
| return (isalnum(c) || (c == '+') || (c == '/')); | |
| } | |
| static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) { | |
| int i = 0; | |
| int j = 0; | |
| int in_ = 0; | |
| int in_len = encoded_string.size(); | |
| uint8_t char_array_4[4]; | |
| uint8_t char_array_3[3]; | |
| std::vector<uint8_t> ret; | |
| while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { | |
| char_array_4[i++] = encoded_string[in_]; in_++; | |
| if (i == 4) { | |
| for (i = 0; i < 4; i++) { | |
| char_array_4[i] = base64_chars.find(char_array_4[i]); | |
| } | |
| char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
| char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
| char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
| for (i = 0; (i < 3); i++) { | |
| ret.push_back(char_array_3[i]); | |
| } | |
| i = 0; | |
| } | |
| } | |
| if (i) { | |
| for (j = i; j < 4; j++) { | |
| char_array_4[j] = 0; | |
| } | |
| for (j = 0; j < 4; j++) { | |
| char_array_4[j] = base64_chars.find(char_array_4[j]); | |
| } | |
| char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
| char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
| char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
| for (j = 0; j < i - 1; j++) { | |
| ret.push_back(char_array_3[j]); | |
| } | |
| } | |
| return ret; | |
| } | |
| // | |
| // random string / id | |
| // | |
| static std::string random_string() { | |
| static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); | |
| std::random_device rd; | |
| std::mt19937 generator(rd()); | |
| std::string result(32, ' '); | |
| for (int i = 0; i < 32; ++i) { | |
| result[i] = str[generator() % str.size()]; | |
| } | |
| return result; | |
| } | |
| static std::string gen_chatcmplid() { | |
| return "chatcmpl-" + random_string(); | |
| } | |
| // | |
| // other common utils | |
| // | |
| static bool ends_with(const std::string & str, const std::string & suffix) { | |
| return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
| } | |
| static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { | |
| if (!text.empty() && !stop.empty()) { | |
| const char text_last_char = text.back(); | |
| for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { | |
| if (stop[char_index] == text_last_char) { | |
| const std::string current_partial = stop.substr(0, char_index + 1); | |
| if (ends_with(text, current_partial)) { | |
| return text.size() - char_index - 1; | |
| } | |
| } | |
| } | |
| } | |
| return std::string::npos; | |
| } | |
| // TODO: reuse llama_detokenize | |
| template <class Iter> | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { | |
| std::string ret; | |
| for (; begin != end; ++begin) { | |
| ret += common_token_to_piece(ctx, *begin); | |
| } | |
| return ret; | |
| } | |
| // format incomplete utf-8 multibyte character for output | |
| static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { | |
| std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token); | |
| // if the size is 1 and first bit is 1, meaning it's a partial character | |
| // (size > 1 meaning it's already a known token) | |
| if (out.size() == 1 && (out[0] & 0x80) == 0x80) { | |
| std::stringstream ss; | |
| ss << std::hex << (out[0] & 0xff); | |
| std::string res(ss.str()); | |
| out = "byte: \\x" + res; | |
| } | |
| return out; | |
| } | |
| static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) { | |
| const std::string str = | |
| std::string(event) + ": " + | |
| data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
| "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row). | |
| LOG_DBG("data stream, to_send: %s", str.c_str()); | |
| return sink.write(str.c_str(), str.size()); | |
| } | |
| // | |
| // OAI utils | |
| // | |
| static json oaicompat_completion_params_parse(const json & body) { | |
| json llama_params; | |
| if (!body.contains("prompt")) { | |
| throw std::runtime_error("\"prompt\" is required"); | |
| } | |
| // Handle "stop" field | |
| if (body.contains("stop") && body.at("stop").is_string()) { | |
| llama_params["stop"] = json::array({body.at("stop").get<std::string>()}); | |
| } else { | |
| llama_params["stop"] = json_value(body, "stop", json::array()); | |
| } | |
| // Handle "n" field | |
| int n_choices = json_value(body, "n", 1); | |
| if (n_choices != 1) { | |
| throw std::runtime_error("Only one completion choice is allowed"); | |
| } | |
| // Params supported by OAI but unsupported by llama.cpp | |
| static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" }; | |
| for (const auto & param : unsupported_params) { | |
| if (body.contains(param)) { | |
| throw std::runtime_error("Unsupported param: " + param); | |
| } | |
| } | |
| // Copy remaining properties to llama_params | |
| for (const auto & item : body.items()) { | |
| // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" | |
| if (!llama_params.contains(item.key()) || item.key() == "n_predict") { | |
| llama_params[item.key()] = item.value(); | |
| } | |
| } | |
| return llama_params; | |
| } | |
| static json oaicompat_completion_params_parse( | |
| const json & body, /* openai api json semantics */ | |
| bool use_jinja, | |
| const common_chat_templates & chat_templates) | |
| { | |
| json llama_params; | |
| const auto & tmpl = body.contains("tools") && chat_templates.template_tool_use | |
| ? *chat_templates.template_tool_use | |
| : *chat_templates.template_default; | |
| auto tools = json_value(body, "tools", json()); | |
| auto stream = json_value(body, "stream", false); | |
| if (tools.is_array() && !tools.empty()) { | |
| if (stream) { | |
| throw std::runtime_error("Cannot use tools with stream"); | |
| } | |
| if (!use_jinja) { | |
| throw std::runtime_error("tools param requires --jinja flag"); | |
| } | |
| } | |
| if (!use_jinja) { | |
| if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) { | |
| throw std::runtime_error("Unsupported param: tool_choice"); | |
| } | |
| } | |
| // Handle "stop" field | |
| if (body.contains("stop") && body.at("stop").is_string()) { | |
| llama_params["stop"] = json::array({body.at("stop").get<std::string>()}); | |
| } else { | |
| llama_params["stop"] = json_value(body, "stop", json::array()); | |
| } | |
| // Handle "response_format" field | |
| if (body.contains("response_format")) { | |
| json response_format = json_value(body, "response_format", json::object()); | |
| std::string response_type = json_value(response_format, "type", std::string()); | |
| if (response_type == "json_object") { | |
| llama_params["json_schema"] = json_value(response_format, "schema", json::object()); | |
| } else if (response_type == "json_schema") { | |
| json json_schema = json_value(response_format, "json_schema", json::object()); | |
| llama_params["json_schema"] = json_value(json_schema, "schema", json::object()); | |
| } else if (!response_type.empty() && response_type != "text") { | |
| throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); | |
| } | |
| } | |
| // Apply chat template to the list of messages | |
| if (use_jinja) { | |
| auto tool_choice = json_value(body, "tool_choice", std::string("auto")); | |
| if (tool_choice != "none" && tool_choice != "auto" && tool_choice != "required") { | |
| throw std::runtime_error("Invalid tool_choice: " + tool_choice); | |
| } | |
| if (tool_choice != "none" && llama_params.contains("grammar")) { | |
| throw std::runtime_error("Cannot use custom grammar constraints with tools."); | |
| } | |
| common_chat_inputs inputs; | |
| inputs.messages = body.at("messages"); | |
| inputs.tools = tools; | |
| inputs.tool_choice = tool_choice; | |
| inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false); | |
| if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) { | |
| LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n"); | |
| inputs.parallel_tool_calls = false; | |
| } | |
| inputs.stream = stream; | |
| // TODO: support mixing schema w/ tools beyond generic format. | |
| inputs.json_schema = json_value(llama_params, "json_schema", json()); | |
| auto chat_params = common_chat_params_init(tmpl, inputs); | |
| llama_params["chat_format"] = static_cast<int>(chat_params.format); | |
| llama_params["prompt"] = chat_params.prompt; | |
| llama_params["grammar"] = chat_params.grammar; | |
| llama_params["grammar_lazy"] = chat_params.grammar_lazy; | |
| auto grammar_triggers = json::array(); | |
| for (const auto & trigger : chat_params.grammar_triggers) { | |
| grammar_triggers.push_back({ | |
| {"word", trigger.word}, | |
| {"at_start", trigger.at_start}, | |
| }); | |
| } | |
| llama_params["grammar_triggers"] = grammar_triggers; | |
| llama_params["preserved_tokens"] = chat_params.preserved_tokens; | |
| for (const auto & stop : chat_params.additional_stops) { | |
| llama_params["stop"].push_back(stop); | |
| } | |
| } else { | |
| llama_params["prompt"] = format_chat(tmpl, body.at("messages")); | |
| } | |
| // Handle "n" field | |
| int n_choices = json_value(body, "n", 1); | |
| if (n_choices != 1) { | |
| throw std::runtime_error("Only one completion choice is allowed"); | |
| } | |
| // Handle "logprobs" field | |
| // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future | |
| if (json_value(body, "logprobs", false)) { | |
| llama_params["n_probs"] = json_value(body, "top_logprobs", 20); | |
| } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { | |
| throw std::runtime_error("top_logprobs requires logprobs to be set to true"); | |
| } | |
| // Copy remaining properties to llama_params | |
| // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint. | |
| // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp | |
| for (const auto & item : body.items()) { | |
| // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" | |
| if (!llama_params.contains(item.key()) || item.key() == "n_predict") { | |
| llama_params[item.key()] = item.value(); | |
| } | |
| } | |
| return llama_params; | |
| } | |
| static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) { | |
| json data = json::array(); | |
| int32_t n_tokens = 0; | |
| int i = 0; | |
| for (const auto & elem : embeddings) { | |
| json embedding_obj; | |
| if (use_base64) { | |
| const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>(); | |
| const char* data_ptr = reinterpret_cast<const char*>(vec.data()); | |
| size_t data_size = vec.size() * sizeof(float); | |
| embedding_obj = { | |
| {"embedding", base64::encode(data_ptr, data_size)}, | |
| {"index", i++}, | |
| {"object", "embedding"}, | |
| {"encoding_format", "base64"} | |
| }; | |
| } else { | |
| embedding_obj = { | |
| {"embedding", json_value(elem, "embedding", json::array())}, | |
| {"index", i++}, | |
| {"object", "embedding"} | |
| }; | |
| } | |
| data.push_back(embedding_obj); | |
| n_tokens += json_value(elem, "tokens_evaluated", 0); | |
| } | |
| json res = json { | |
| {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
| {"object", "list"}, | |
| {"usage", json { | |
| {"prompt_tokens", n_tokens}, | |
| {"total_tokens", n_tokens} | |
| }}, | |
| {"data", data} | |
| }; | |
| return res; | |
| } | |
| static json format_response_rerank(const json & request, const json & ranks) { | |
| json data = json::array(); | |
| int32_t n_tokens = 0; | |
| int i = 0; | |
| for (const auto & rank : ranks) { | |
| data.push_back(json{ | |
| {"index", i++}, | |
| {"relevance_score", json_value(rank, "score", 0.0)}, | |
| }); | |
| n_tokens += json_value(rank, "tokens_evaluated", 0); | |
| } | |
| json res = json { | |
| {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
| {"object", "list"}, | |
| {"usage", json { | |
| {"prompt_tokens", n_tokens}, | |
| {"total_tokens", n_tokens} | |
| }}, | |
| {"results", data} | |
| }; | |
| return res; | |
| } | |
| static bool is_valid_utf8(const std::string & str) { | |
| const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data()); | |
| const unsigned char* end = bytes + str.length(); | |
| while (bytes < end) { | |
| if (*bytes <= 0x7F) { | |
| // 1-byte sequence (0xxxxxxx) | |
| bytes++; | |
| } else if ((*bytes & 0xE0) == 0xC0) { | |
| // 2-byte sequence (110xxxxx 10xxxxxx) | |
| if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) | |
| return false; | |
| bytes += 2; | |
| } else if ((*bytes & 0xF0) == 0xE0) { | |
| // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx) | |
| if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) | |
| return false; | |
| bytes += 3; | |
| } else if ((*bytes & 0xF8) == 0xF0) { | |
| // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx) | |
| if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || | |
| (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) | |
| return false; | |
| bytes += 4; | |
| } else { | |
| // Invalid UTF-8 lead byte | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| static json format_tokenizer_response(const json & tokens) { | |
| return json { | |
| {"tokens", tokens} | |
| }; | |
| } | |
| static json format_detokenized_response(const std::string & content) { | |
| return json { | |
| {"content", content} | |
| }; | |
| } | |
| static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) { | |
| json data = json::array(); | |
| for (const auto & lb : logit_bias) { | |
| data.push_back(json{ | |
| {"bias", lb.bias}, | |
| {"token", lb.token}, | |
| }); | |
| } | |
| return data; | |
| } | |
| static std::string safe_json_to_str(const json & data) { | |
| return data.dump(-1, ' ', false, json::error_handler_t::replace); | |
| } | |
| static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) { | |
| std::vector<llama_token_data> cur; | |
| const auto * logits = llama_get_logits_ith(ctx, idx); | |
| const llama_model * model = llama_get_model(ctx); | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| const int n_vocab = llama_vocab_n_tokens(vocab); | |
| cur.resize(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; | |
| } | |
| // sort tokens by logits | |
| std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) { | |
| return a.logit > b.logit; | |
| }); | |
| // apply softmax | |
| float max_l = cur[0].logit; | |
| float cum_sum = 0.0f; | |
| for (size_t i = 0; i < cur.size(); ++i) { | |
| float p = expf(cur[i].logit - max_l); | |
| cur[i].p = p; | |
| cum_sum += p; | |
| } | |
| for (size_t i = 0; i < cur.size(); ++i) { | |
| cur[i].p /= cum_sum; | |
| } | |
| return cur; | |
| } | |
| static bool are_lora_equal( | |
| const std::vector<common_adapter_lora_info> & l1, | |
| const std::vector<common_adapter_lora_info> & l2) { | |
| if (l1.size() != l2.size()) { | |
| return false; | |
| } | |
| for (size_t i = 0; i < l1.size(); ++i) { | |
| // we don't check lora.path to reduce the time complexity | |
| if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| // parse lora config from JSON request, returned a copy of lora_base with updated scale | |
| static std::vector<common_adapter_lora_info> parse_lora_request( | |
| const std::vector<common_adapter_lora_info> & lora_base, | |
| const json & data) { | |
| std::vector<common_adapter_lora_info> lora(lora_base); | |
| int max_idx = lora.size(); | |
| // clear existing value | |
| for (auto & entry : lora) { | |
| entry.scale = 0.0f; | |
| } | |
| // set value | |
| for (const auto & entry : data) { | |
| int id = json_value(entry, "id", -1); | |
| float scale = json_value(entry, "scale", 0.0f); | |
| if (0 <= id && id < max_idx) { | |
| lora[id].scale = scale; | |
| } else { | |
| throw std::runtime_error("invalid adapter id"); | |
| } | |
| } | |
| return lora; | |
| } | |