Spaces:
Build error
Build error
| static void print_usage(int, char ** argv) { | |
| printf("\nexample usage:\n"); | |
| printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); | |
| printf("\n"); | |
| } | |
| int main(int argc, char ** argv) { | |
| // path to the model gguf file | |
| std::string model_path; | |
| // prompt to generate text from | |
| std::string prompt = "Hello my name is"; | |
| // number of layers to offload to the GPU | |
| int ngl = 99; | |
| // number of tokens to predict | |
| int n_predict = 32; | |
| // parse command line arguments | |
| { | |
| int i = 1; | |
| for (; i < argc; i++) { | |
| if (strcmp(argv[i], "-m") == 0) { | |
| if (i + 1 < argc) { | |
| model_path = argv[++i]; | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else if (strcmp(argv[i], "-n") == 0) { | |
| if (i + 1 < argc) { | |
| try { | |
| n_predict = std::stoi(argv[++i]); | |
| } catch (...) { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else if (strcmp(argv[i], "-ngl") == 0) { | |
| if (i + 1 < argc) { | |
| try { | |
| ngl = std::stoi(argv[++i]); | |
| } catch (...) { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| } else { | |
| // prompt starts here | |
| break; | |
| } | |
| } | |
| if (model_path.empty()) { | |
| print_usage(argc, argv); | |
| return 1; | |
| } | |
| if (i < argc) { | |
| prompt = argv[i++]; | |
| for (; i < argc; i++) { | |
| prompt += " "; | |
| prompt += argv[i]; | |
| } | |
| } | |
| } | |
| // load dynamic backends | |
| ggml_backend_load_all(); | |
| // initialize the model | |
| llama_model_params model_params = llama_model_default_params(); | |
| model_params.n_gpu_layers = ngl; | |
| llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params); | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| if (model == NULL) { | |
| fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
| return 1; | |
| } | |
| // tokenize the prompt | |
| // find the number of tokens in the prompt | |
| const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true); | |
| // allocate space for the tokens and tokenize the prompt | |
| std::vector<llama_token> prompt_tokens(n_prompt); | |
| if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { | |
| fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); | |
| return 1; | |
| } | |
| // initialize the context | |
| llama_context_params ctx_params = llama_context_default_params(); | |
| // n_ctx is the context size | |
| ctx_params.n_ctx = n_prompt + n_predict - 1; | |
| // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode | |
| ctx_params.n_batch = n_prompt; | |
| // enable performance counters | |
| ctx_params.no_perf = false; | |
| llama_context * ctx = llama_init_from_model(model, ctx_params); | |
| if (ctx == NULL) { | |
| fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
| return 1; | |
| } | |
| // initialize the sampler | |
| auto sparams = llama_sampler_chain_default_params(); | |
| sparams.no_perf = false; | |
| llama_sampler * smpl = llama_sampler_chain_init(sparams); | |
| llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); | |
| // print the prompt token-by-token | |
| for (auto id : prompt_tokens) { | |
| char buf[128]; | |
| int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true); | |
| if (n < 0) { | |
| fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | |
| return 1; | |
| } | |
| std::string s(buf, n); | |
| printf("%s", s.c_str()); | |
| } | |
| // prepare a batch for the prompt | |
| llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); | |
| // main loop | |
| const auto t_main_start = ggml_time_us(); | |
| int n_decode = 0; | |
| llama_token new_token_id; | |
| for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { | |
| // evaluate the current batch with the transformer model | |
| if (llama_decode(ctx, batch)) { | |
| fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); | |
| return 1; | |
| } | |
| n_pos += batch.n_tokens; | |
| // sample the next token | |
| { | |
| new_token_id = llama_sampler_sample(smpl, ctx, -1); | |
| // is it an end of generation? | |
| if (llama_vocab_is_eog(vocab, new_token_id)) { | |
| break; | |
| } | |
| char buf[128]; | |
| int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true); | |
| if (n < 0) { | |
| fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); | |
| return 1; | |
| } | |
| std::string s(buf, n); | |
| printf("%s", s.c_str()); | |
| fflush(stdout); | |
| // prepare the next batch with the sampled token | |
| batch = llama_batch_get_one(&new_token_id, 1); | |
| n_decode += 1; | |
| } | |
| } | |
| printf("\n"); | |
| const auto t_main_end = ggml_time_us(); | |
| fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", | |
| __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); | |
| fprintf(stderr, "\n"); | |
| llama_perf_sampler_print(smpl); | |
| llama_perf_context_print(ctx); | |
| fprintf(stderr, "\n"); | |
| llama_sampler_free(smpl); | |
| llama_free(ctx); | |
| llama_model_free(model); | |
| return 0; | |
| } | |