Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # This script downloads the tokenizer models of the specified models from Huggingface and | |
| # generates the get_vocab_base_pre() function for convert_hf_to_gguf.py | |
| # | |
| # This is necessary in order to analyze the type of pre-tokenizer used by the model and | |
| # provide the necessary information to llama.cpp via the GGUF header in order to implement | |
| # the same pre-tokenizer. | |
| # | |
| # ref: https://github.com/ggerganov/llama.cpp/pull/6920 | |
| # | |
| # Instructions: | |
| # | |
| # - Add a new model to the "models" list | |
| # - Run the script with your huggingface token: | |
| # | |
| # python3 convert_hf_to_gguf_update.py <huggingface_token> | |
| # | |
| # - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated | |
| # - Update llama.cpp with the new pre-tokenizer if necessary | |
| # | |
| # TODO: generate tokenizer tests for llama.cpp | |
| # | |
| import logging | |
| import os | |
| import pathlib | |
| import re | |
| import requests | |
| import sys | |
| import json | |
| import shutil | |
| from hashlib import sha256 | |
| from enum import IntEnum, auto | |
| from transformers import AutoTokenizer | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger("convert_hf_to_gguf_update") | |
| sess = requests.Session() | |
| class TOKENIZER_TYPE(IntEnum): | |
| SPM = auto() | |
| BPE = auto() | |
| WPM = auto() | |
| UGM = auto() | |
| # TODO: this string has to exercise as much pre-tokenizer functionality as possible | |
| # will be updated with time - contributions welcome | |
| CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' | |
| if len(sys.argv) == 2: | |
| token = sys.argv[1] | |
| if not token.startswith("hf_"): | |
| logger.info("Huggingface token seems invalid") | |
| logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>") | |
| sys.exit(1) | |
| else: | |
| logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>") | |
| sys.exit(1) | |
| # TODO: add models here, base models preferred | |
| models = [ | |
| {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, | |
| {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, | |
| {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, | |
| {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, | |
| {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, | |
| {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, | |
| {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, | |
| {"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", }, | |
| {"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, | |
| {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, | |
| {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, | |
| {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, | |
| {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, | |
| {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, | |
| {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, | |
| {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, | |
| {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, | |
| {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, | |
| {"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", }, | |
| {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! | |
| {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, | |
| {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, | |
| {"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", }, | |
| {"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, | |
| {"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, | |
| {"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B | |
| {"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", }, | |
| {"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", }, | |
| {"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", }, | |
| {"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", }, | |
| {"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, | |
| {"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, | |
| {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, | |
| {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, | |
| {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, | |
| {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, | |
| {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, | |
| {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, | |
| {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, | |
| {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, | |
| {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, | |
| {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, | |
| {"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"}, | |
| {"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"}, | |
| ] | |
| def download_file_with_auth(url, token, save_path): | |
| headers = {"Authorization": f"Bearer {token}"} | |
| response = sess.get(url, headers=headers) | |
| response.raise_for_status() | |
| os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
| with open(save_path, 'wb') as downloaded_file: | |
| downloaded_file.write(response.content) | |
| logger.info(f"File {save_path} downloaded successfully") | |
| def download_model(model): | |
| name = model["name"] | |
| repo = model["repo"] | |
| tokt = model["tokt"] | |
| os.makedirs(f"models/tokenizers/{name}", exist_ok=True) | |
| files = ["config.json", "tokenizer.json", "tokenizer_config.json"] | |
| if tokt == TOKENIZER_TYPE.SPM: | |
| files.append("tokenizer.model") | |
| if tokt == TOKENIZER_TYPE.UGM: | |
| files.append("spiece.model") | |
| if os.path.isdir(repo): | |
| # If repo is a path on the file system, copy the directory | |
| for file in files: | |
| src_path = os.path.join(repo, file) | |
| dst_path = f"models/tokenizers/{name}/{file}" | |
| if os.path.isfile(dst_path): | |
| logger.info(f"{name}: File {dst_path} already exists - skipping") | |
| continue | |
| if os.path.isfile(src_path): | |
| shutil.copy2(src_path, dst_path) | |
| logger.info(f"{name}: Copied {src_path} to {dst_path}") | |
| else: | |
| logger.warning(f"{name}: Source file {src_path} does not exist") | |
| else: | |
| # If repo is a URL, download the files | |
| for file in files: | |
| save_path = f"models/tokenizers/{name}/{file}" | |
| if os.path.isfile(save_path): | |
| logger.info(f"{name}: File {save_path} already exists - skipping") | |
| continue | |
| download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path) | |
| for model in models: | |
| try: | |
| download_model(model) | |
| except Exception as e: | |
| logger.error(f"Failed to download model {model['name']}. Error: {e}") | |
| # generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function: | |
| src_ifs = "" | |
| for model in models: | |
| name = model["name"] | |
| tokt = model["tokt"] | |
| if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM: | |
| continue | |
| # Skip if the tokenizer folder does not exist or there are other download issues previously | |
| if not os.path.exists(f"models/tokenizers/{name}"): | |
| logger.warning(f"Directory for tokenizer {name} not found. Skipping...") | |
| continue | |
| # create the tokenizer | |
| try: | |
| if name == "t5": | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") | |
| except OSError as e: | |
| logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") | |
| continue # Skip to the next model if the tokenizer can't be loaded | |
| chktok = tokenizer.encode(CHK_TXT) | |
| chkhsh = sha256(str(chktok).encode()).hexdigest() | |
| logger.info(f"model: {name}") | |
| logger.info(f"tokt: {tokt}") | |
| logger.info(f"repo: {model['repo']}") | |
| logger.info(f"chktok: {chktok}") | |
| logger.info(f"chkhsh: {chkhsh}") | |
| # print the "pre_tokenizer" content from the tokenizer.json | |
| with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: | |
| cfg = json.load(f) | |
| normalizer = cfg["normalizer"] | |
| logger.info("normalizer: " + json.dumps(normalizer, indent=4)) | |
| pre_tokenizer = cfg["pre_tokenizer"] | |
| logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) | |
| if "ignore_merges" in cfg["model"]: | |
| logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) | |
| logger.info("") | |
| src_ifs += f" if chkhsh == \"{chkhsh}\":\n" | |
| src_ifs += f" # ref: {model['repo']}\n" | |
| src_ifs += f" res = \"{name}\"\n" | |
| src_func = f""" | |
| def get_vocab_base_pre(self, tokenizer) -> str: | |
| # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that | |
| # is specific for the BPE pre-tokenizer used by the model | |
| # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can | |
| # use in llama.cpp to implement the same pre-tokenizer | |
| chktxt = {repr(CHK_TXT)} | |
| chktok = tokenizer.encode(chktxt) | |
| chkhsh = sha256(str(chktok).encode()).hexdigest() | |
| logger.debug(f"chktok: {{chktok}}") | |
| logger.debug(f"chkhsh: {{chkhsh}}") | |
| res = None | |
| # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script | |
| # or pull the latest version of the model from Huggingface | |
| # don't edit the hashes manually! | |
| {src_ifs} | |
| if res is None: | |
| logger.warning("\\n") | |
| logger.warning("**************************************************************************************") | |
| logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") | |
| logger.warning("** There are 2 possible reasons for this:") | |
| logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") | |
| logger.warning("** - the pre-tokenization config has changed upstream") | |
| logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") | |
| logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") | |
| logger.warning("**") | |
| logger.warning(f"** chkhsh: {{chkhsh}}") | |
| logger.warning("**************************************************************************************") | |
| logger.warning("\\n") | |
| raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") | |
| logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}") | |
| logger.debug(f"chkhsh: {{chkhsh}}") | |
| return res | |
| """ | |
| convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") | |
| convert_py = convert_py_pth.read_text(encoding="utf-8") | |
| convert_py = re.sub( | |
| r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", | |
| lambda m: m.group(1) + src_func + m.group(3), | |
| convert_py, | |
| flags=re.DOTALL | re.MULTILINE, | |
| ) | |
| convert_py_pth.write_text(convert_py, encoding="utf-8") | |
| logger.info("+++ convert_hf_to_gguf.py was updated") | |
| # generate tests for each tokenizer model | |
| tests = [ | |
| "ied 4 ½ months", | |
| "Führer", | |
| "", | |
| " ", | |
| " ", | |
| " ", | |
| "\t", | |
| "\n", | |
| "\n\n", | |
| "\n\n\n", | |
| "\t\n", | |
| "Hello world", | |
| " Hello world", | |
| "Hello World", | |
| " Hello World", | |
| " Hello World!", | |
| "Hello, world!", | |
| " Hello, world!", | |
| " this is 🦙.cpp", | |
| "w048 7tuijk dsdfhu", | |
| "нещо на Български", | |
| "កាន់តែពិសេសអាចខលចេញ", | |
| "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", | |
| "Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello\n Hello", | |
| " (", | |
| "\n =", | |
| "' era", | |
| "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", | |
| "!!!!!!", | |
| "3", | |
| "33", | |
| "333", | |
| "3333", | |
| "33333", | |
| "333333", | |
| "3333333", | |
| "33333333", | |
| "333333333", | |
| "Cửa Việt", # llama-bpe fails on this | |
| " discards", | |
| CHK_TXT, | |
| ] | |
| # write the tests to ./models/ggml-vocab-{name}.gguf.inp | |
| # the format is: | |
| # | |
| # test0 | |
| # __ggml_vocab_test__ | |
| # test1 | |
| # __ggml_vocab_test__ | |
| # ... | |
| # | |
| # with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out | |
| # for each test, write the resulting tokens on a separate line | |
| for model in models: | |
| name = model["name"] | |
| tokt = model["tokt"] | |
| # Skip if the tokenizer folder does not exist or there are other download issues previously | |
| if not os.path.exists(f"models/tokenizers/{name}"): | |
| logger.warning(f"Directory for tokenizer {name} not found. Skipping...") | |
| continue | |
| # create the tokenizer | |
| try: | |
| if name == "t5": | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") | |
| except OSError as e: | |
| logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") | |
| continue # Skip this model and continue with the next one in the loop | |
| with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: | |
| for text in tests: | |
| f.write(f"{text}") | |
| f.write("\n__ggml_vocab_test__\n") | |
| with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: | |
| for text in tests: | |
| res = tokenizer.encode(text, add_special_tokens=False) | |
| for r in res: | |
| f.write(f" {r}") | |
| f.write("\n") | |
| logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") | |
| # generate commands for creating vocab files | |
| logger.info("\nRun the following commands to generate the vocab files for testing:\n") | |
| for model in models: | |
| name = model["name"] | |
| print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100 | |
| logger.info("\n") | |