Spaces:
Build error
Build error
| static void print_usage(int, char ** argv) { | |
| LOG("\nexample usage:\n"); | |
| LOG("\n %s \\\n" | |
| " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n" | |
| " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n" | |
| " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]); | |
| LOG("\n"); | |
| } | |
| struct Stats { | |
| std::vector<float> values; | |
| std::vector<int> counts; | |
| int ncall = 0; | |
| }; | |
| class IMatrixCollector { | |
| public: | |
| IMatrixCollector() = default; | |
| void set_params(common_params params) { m_params = std::move(params); } | |
| bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); | |
| void save_imatrix(int ncall = -1) const; | |
| bool load_imatrix(const char * fname); | |
| private: | |
| std::unordered_map<std::string, Stats> m_stats; | |
| common_params m_params; | |
| std::mutex m_mutex; | |
| int m_last_call = 0; | |
| std::vector<float> m_src1_data; | |
| std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id | |
| }; | |
| // remove any prefix and suffixes from the name | |
| // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight | |
| static std::string filter_tensor_name(const char * name) { | |
| std::string wname; | |
| const char * p = strchr(name, '#'); | |
| if (p != NULL) { | |
| p = p + 1; | |
| const char * q = strchr(p, '#'); | |
| if (q != NULL) { | |
| wname = std::string(p, q - p); | |
| } else { | |
| wname = p; | |
| } | |
| } else { | |
| wname = name; | |
| } | |
| return wname; | |
| } | |
| bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { | |
| GGML_UNUSED(user_data); | |
| const struct ggml_tensor * src0 = t->src[0]; | |
| const struct ggml_tensor * src1 = t->src[1]; | |
| std::string wname = filter_tensor_name(src0->name); | |
| // when ask is true, the scheduler wants to know if we are interested in data from this tensor | |
| // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection | |
| if (ask) { | |
| if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications | |
| if (t->op != GGML_OP_MUL_MAT) return false; | |
| // why are small batches ignored (<16 tokens)? | |
| if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; | |
| if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false; | |
| return true; | |
| } | |
| std::lock_guard<std::mutex> lock(m_mutex); | |
| // copy the data from the GPU memory if needed | |
| const bool is_host = ggml_backend_buffer_is_host(src1->buffer); | |
| if (!is_host) { | |
| m_src1_data.resize(ggml_nelements(src1)); | |
| ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1)); | |
| } | |
| const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); | |
| // this has been adapted to the new format of storing merged experts in a single 3d tensor | |
| // ref: https://github.com/ggerganov/llama.cpp/pull/6387 | |
| if (t->op == GGML_OP_MUL_MAT_ID) { | |
| // ids -> [n_experts_used, n_tokens] | |
| // src1 -> [cols, n_expert_used, n_tokens] | |
| const ggml_tensor * ids = t->src[2]; | |
| const int n_as = src0->ne[2]; | |
| const int n_ids = ids->ne[0]; | |
| // the top-k selected expert ids are stored in the ids tensor | |
| // for simplicity, always copy ids to host, because it is small | |
| // take into account that ids is not contiguous! | |
| GGML_ASSERT(ids->ne[1] == src1->ne[2]); | |
| m_ids.resize(ggml_nbytes(ids)); | |
| ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids)); | |
| auto & e = m_stats[wname]; | |
| ++e.ncall; | |
| if (e.values.empty()) { | |
| e.values.resize(src1->ne[0]*n_as, 0); | |
| e.counts.resize(src1->ne[0]*n_as, 0); | |
| } | |
| else if (e.values.size() != (size_t)src1->ne[0]*n_as) { | |
| LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); | |
| exit(1); //GGML_ABORT("fatal error"); | |
| } | |
| LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type); | |
| // loop over all possible experts, regardless if they are used or not in the batch | |
| for (int ex = 0; ex < n_as; ++ex) { | |
| size_t e_start = ex*src1->ne[0]; | |
| for (int idx = 0; idx < n_ids; ++idx) { | |
| for (int row = 0; row < (int)src1->ne[2]; ++row) { | |
| const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]); | |
| GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check | |
| if (excur != ex) continue; | |
| const int64_t i11 = idx % src1->ne[1]; | |
| const int64_t i12 = row; | |
| const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]); | |
| for (int j = 0; j < (int)src1->ne[0]; ++j) { | |
| e.values[e_start + j] += x[j]*x[j]; | |
| e.counts[e_start + j]++; | |
| if (!std::isfinite(e.values[e_start + j])) { | |
| LOG("\n"); | |
| LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str()); | |
| exit(1); | |
| } | |
| } | |
| } | |
| } | |
| if (e.ncall > m_last_call) { | |
| m_last_call = e.ncall; | |
| if (m_last_call % m_params.n_out_freq == 0) { | |
| save_imatrix(); | |
| } | |
| if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { | |
| save_imatrix(m_last_call); | |
| } | |
| } | |
| } | |
| } else { | |
| auto & e = m_stats[wname]; | |
| if (e.values.empty()) { | |
| e.values.resize(src1->ne[0], 0); | |
| e.counts.resize(src1->ne[0], 0); | |
| } | |
| else if (e.values.size() != (size_t)src1->ne[0]) { | |
| LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); | |
| exit(1); //GGML_ABORT("fatal error"); | |
| } | |
| ++e.ncall; | |
| LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); | |
| for (int row = 0; row < (int)src1->ne[1]; ++row) { | |
| const float * x = data + row * src1->ne[0]; | |
| for (int j = 0; j < (int)src1->ne[0]; ++j) { | |
| e.values[j] += x[j]*x[j]; | |
| e.counts[j]++; | |
| if (!std::isfinite(e.values[j])) { | |
| LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str()); | |
| exit(1); | |
| } | |
| } | |
| } | |
| if (e.ncall > m_last_call) { | |
| m_last_call = e.ncall; | |
| if (m_last_call % m_params.n_out_freq == 0) { | |
| save_imatrix(); | |
| } | |
| if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { | |
| save_imatrix(m_last_call); | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| void IMatrixCollector::save_imatrix(int ncall) const { | |
| auto fname = m_params.out_file; | |
| if (fname.empty()) { | |
| fname = "imatrix.dat"; | |
| } | |
| if (ncall > 0) { | |
| fname += ".at_"; | |
| fname += std::to_string(ncall); | |
| } | |
| // avoid writing imatrix entries that do not have full data | |
| // this can happen with MoE models where some of the experts end up not being exercised by the provided training data | |
| int n_entries = 0; | |
| std::vector<std::string> to_store; | |
| bool is_first = true; // for printing | |
| for (const auto & kv : m_stats) { | |
| const int n_all = kv.second.counts.size(); | |
| if (n_all == 0) { | |
| continue; | |
| } | |
| int n_zeros = 0; | |
| for (const int c : kv.second.counts) { | |
| if (c == 0) { | |
| n_zeros++; | |
| } | |
| } | |
| if (n_zeros != 0 && is_first) { | |
| LOG_INF("\n"); | |
| is_first = false; | |
| } | |
| if (n_zeros == n_all) { | |
| LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str()); | |
| continue; | |
| } | |
| if (n_zeros > 0) { | |
| LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); | |
| continue; | |
| } | |
| n_entries++; | |
| to_store.push_back(kv.first); | |
| } | |
| if (to_store.size() < m_stats.size()) { | |
| LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size()); | |
| } | |
| std::ofstream out(fname, std::ios::binary); | |
| out.write((const char *) &n_entries, sizeof(n_entries)); | |
| for (const auto & name : to_store) { | |
| const auto & stat = m_stats.at(name); | |
| int len = name.size(); | |
| out.write((const char *) &len, sizeof(len)); | |
| out.write(name.c_str(), len); | |
| out.write((const char *) &stat.ncall, sizeof(stat.ncall)); | |
| int nval = stat.values.size(); | |
| out.write((const char *) &nval, sizeof(nval)); | |
| if (nval > 0) { | |
| std::vector<float> tmp(nval); | |
| for (int i = 0; i < nval; i++) { | |
| tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall); | |
| } | |
| out.write((const char*)tmp.data(), nval*sizeof(float)); | |
| } | |
| } | |
| // Write the number of call the matrix was computed with | |
| out.write((const char *) &m_last_call, sizeof(m_last_call)); | |
| // Write the input filename at the end of the file to later on specify it in quantize | |
| { | |
| int len = m_params.prompt_file.size(); | |
| out.write((const char *) &len, sizeof(len)); | |
| out.write(m_params.prompt_file.c_str(), len); | |
| } | |
| LOGV(1, "\n"); | |
| LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str()); | |
| } | |
| bool IMatrixCollector::load_imatrix(const char * fname) { | |
| std::ifstream in(fname, std::ios::binary); | |
| if (!in) { | |
| LOG_ERR("%s: failed to open %s\n",__func__, fname); | |
| return false; | |
| } | |
| int n_entries; | |
| in.read((char*)&n_entries, sizeof(n_entries)); | |
| if (in.fail() || n_entries < 1) { | |
| LOG_ERR("%s: no data in file %s\n", __func__, fname); | |
| return false; | |
| } | |
| for (int i = 0; i < n_entries; ++i) { | |
| int len; in.read((char *)&len, sizeof(len)); | |
| std::vector<char> name_as_vec(len+1); | |
| in.read((char *)name_as_vec.data(), len); | |
| if (in.fail()) { | |
| LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname); | |
| return false; | |
| } | |
| name_as_vec[len] = 0; | |
| std::string name{name_as_vec.data()}; | |
| auto & e = m_stats[std::move(name)]; | |
| int ncall; | |
| in.read((char*)&ncall, sizeof(ncall)); | |
| int nval; | |
| in.read((char *)&nval, sizeof(nval)); | |
| if (in.fail() || nval < 1) { | |
| LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i); | |
| m_stats = {}; | |
| return false; | |
| } | |
| if (e.values.empty()) { | |
| e.values.resize(nval, 0); | |
| e.counts.resize(nval, 0); | |
| } | |
| std::vector<float> tmp(nval); | |
| in.read((char*)tmp.data(), nval*sizeof(float)); | |
| if (in.fail()) { | |
| LOG_ERR("%s: failed reading data for entry %d\n",__func__,i); | |
| m_stats = {}; | |
| return false; | |
| } | |
| // Recreate the state as expected by save_imatrix(), and corerct for weighted sum. | |
| for (int i = 0; i < nval; i++) { | |
| e.values[i] += tmp[i]; | |
| e.counts[i] += ncall; | |
| } | |
| e.ncall += ncall; | |
| } | |
| return true; | |
| } | |
| static IMatrixCollector g_collector; | |
| static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { | |
| return g_collector.collect_imatrix(t, ask, user_data); | |
| } | |
| struct results_log_softmax { | |
| double log_softmax; | |
| float logit; | |
| float prob; | |
| }; | |
| static std::vector<float> softmax(const std::vector<float> & logits) { | |
| std::vector<float> probs(logits.size()); | |
| float max_logit = logits[0]; | |
| for (float v : logits) { | |
| max_logit = std::max(max_logit, v); | |
| } | |
| double sum_exp = 0.0; | |
| for (size_t i = 0; i < logits.size(); i++) { | |
| // Subtract the maximum logit value from the current logit value for numerical stability | |
| const float logit = logits[i] - max_logit; | |
| const float exp_logit = expf(logit); | |
| sum_exp += exp_logit; | |
| probs[i] = exp_logit; | |
| } | |
| for (size_t i = 0; i < probs.size(); i++) { | |
| probs[i] /= sum_exp; | |
| } | |
| return probs; | |
| } | |
| static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { | |
| float max_logit = logits[0]; | |
| for (int i = 1; i < n_vocab; ++i) { | |
| max_logit = std::max(max_logit, logits[i]); | |
| } | |
| double sum_exp = 0.0; | |
| for (int i = 0; i < n_vocab; ++i) { | |
| sum_exp += expf(logits[i] - max_logit); | |
| } | |
| return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; | |
| } | |
| static void process_logits( | |
| int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers, | |
| double & nll, double & nll2, float * logit_history, float * prob_history) { | |
| std::mutex mutex; | |
| int counter = 0; | |
| auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { | |
| double local_nll = 0; | |
| double local_nll2 = 0; | |
| while (true) { | |
| std::unique_lock<std::mutex> lock(mutex); | |
| int i = counter++; | |
| if (i >= n_token) { | |
| nll += local_nll; nll2 += local_nll2; | |
| break; | |
| } | |
| lock.unlock(); | |
| const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); | |
| const double v = -results.log_softmax; | |
| local_nll += v; | |
| local_nll2 += v*v; | |
| logit_history[i] = results.logit; | |
| prob_history[i] = results.prob; | |
| } | |
| }; | |
| for (auto & w : workers) { | |
| w = std::thread(compute); | |
| } | |
| compute(); | |
| for (auto & w : workers) { | |
| w.join(); | |
| } | |
| } | |
| static bool compute_imatrix(llama_context * ctx, const common_params & params) { | |
| const llama_model * model = llama_get_model(ctx); | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| const bool add_bos = llama_vocab_get_add_bos(vocab); | |
| const int n_ctx = llama_n_ctx(ctx); | |
| GGML_ASSERT(!llama_vocab_get_add_eos(vocab)); | |
| auto tim1 = std::chrono::high_resolution_clock::now(); | |
| LOG_INF("%s: tokenizing the input ..\n", __func__); | |
| std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true); | |
| auto tim2 = std::chrono::high_resolution_clock::now(); | |
| LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count()); | |
| if (params.i_chunk > 0) { | |
| if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) { | |
| LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk); | |
| return false; | |
| } | |
| LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx); | |
| tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx); | |
| } | |
| if (int(tokens.size()) < 2*n_ctx) { | |
| LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx); | |
| LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size()); | |
| return false; | |
| } | |
| std::vector<float> logit_history; | |
| std::vector<float> prob_history; | |
| if (params.compute_ppl) { | |
| logit_history.resize(tokens.size()); | |
| prob_history.resize(tokens.size()); | |
| } | |
| const int n_chunk_max = tokens.size() / n_ctx; | |
| const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); | |
| const int n_vocab = llama_vocab_n_tokens(vocab); | |
| const int n_batch = params.n_batch; | |
| int count = 0; | |
| double nll = 0.0; | |
| double nll2 = 0.0; | |
| LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch); | |
| std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); | |
| const int num_batches = (n_ctx + n_batch - 1) / n_batch; | |
| std::vector<float> logits; | |
| if (params.compute_ppl && num_batches > 1) { | |
| logits.reserve((size_t)n_ctx * n_vocab); | |
| } | |
| for (int i = 0; i < n_chunk; ++i) { | |
| const int start = i * n_ctx; | |
| const int end = start + n_ctx; | |
| std::vector<float> logits; | |
| const auto t_start = std::chrono::high_resolution_clock::now(); | |
| // clear the KV cache | |
| llama_kv_cache_clear(ctx); | |
| llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
| for (int j = 0; j < num_batches; ++j) { | |
| const int batch_start = start + j * n_batch; | |
| const int batch_size = std::min(end - batch_start, n_batch); | |
| // save original token and restore it after eval | |
| const auto token_org = tokens[batch_start]; | |
| // add BOS token for the first batch of each chunk | |
| if (add_bos && j == 0) { | |
| tokens[batch_start] = llama_vocab_bos(vocab); | |
| } | |
| common_batch_clear(batch); | |
| for (int i = 0; i < batch_size; i++) { | |
| common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); | |
| } | |
| if (llama_decode(ctx, batch)) { | |
| LOG_ERR("%s : failed to eval\n", __func__); | |
| llama_batch_free(batch); | |
| return false; | |
| } | |
| // restore the original token in case it was set to BOS | |
| tokens[batch_start] = token_org; | |
| if (params.compute_ppl && num_batches > 1) { | |
| const auto * batch_logits = llama_get_logits(ctx); | |
| logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); | |
| } | |
| } | |
| llama_batch_free(batch); | |
| const auto t_end = std::chrono::high_resolution_clock::now(); | |
| if (i == 0) { | |
| const float t_total = std::chrono::duration<float>(t_end - t_start).count(); | |
| LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); | |
| int total_seconds = (int)(t_total * n_chunk); | |
| if (total_seconds >= 60*60) { | |
| LOG("%d hours ", total_seconds / (60*60)); | |
| total_seconds = total_seconds % (60*60); | |
| } | |
| LOG("%.2f minutes\n", total_seconds / 60.0); | |
| } | |
| if (params.compute_ppl) { | |
| const int first = n_ctx/2; | |
| const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); | |
| process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, | |
| workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); | |
| count += n_ctx - first - 1; | |
| LOG("[%d]%.4lf,", i + 1, std::exp(nll / count)); | |
| fflush(stdout); | |
| logits.clear(); | |
| } | |
| } | |
| LOG("\n"); | |
| if (params.compute_ppl) { | |
| nll2 /= count; | |
| nll /= count; | |
| const double ppl = exp(nll); | |
| nll2 -= nll * nll; | |
| if (nll2 > 0) { | |
| nll2 = sqrt(nll2/(count-1)); | |
| LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); | |
| } else { | |
| LOG("Unexpected negative standard deviation of log(prob)\n"); | |
| } | |
| } | |
| return true; | |
| } | |
| int main(int argc, char ** argv) { | |
| common_params params; | |
| params.n_ctx = 512; | |
| params.logits_all = true; | |
| params.escape = false; | |
| if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) { | |
| return 1; | |
| } | |
| common_init(); | |
| params.n_batch = std::min(params.n_batch, params.n_ctx); | |
| g_collector.set_params(params); | |
| for (const auto & in_file : params.in_files) { | |
| LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str()); | |
| if (!g_collector.load_imatrix(in_file.c_str())) { | |
| LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str()); | |
| return 1; | |
| } | |
| } | |
| if (params.in_files.size() > 1) { | |
| LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); | |
| g_collector.save_imatrix(); | |
| } | |
| llama_backend_init(); | |
| llama_numa_init(params.numa); | |
| // pass the callback to the backend scheduler | |
| // it will be executed for each node during the graph computation | |
| params.cb_eval = ik_collect_imatrix; | |
| params.cb_eval_user_data = NULL; | |
| params.warmup = false; | |
| // init | |
| common_init_result llama_init = common_init_from_params(params); | |
| llama_model * model = llama_init.model.get(); | |
| llama_context * ctx = llama_init.context.get(); | |
| if (model == nullptr || ctx == nullptr) { | |
| LOG_ERR("%s : failed to init\n", __func__); | |
| return 1; | |
| } | |
| const int n_ctx_train = llama_model_n_ctx_train(model); | |
| if (params.n_ctx > n_ctx_train) { | |
| LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", | |
| __func__, n_ctx_train, params.n_ctx); | |
| } | |
| // print system information | |
| { | |
| LOG_INF("\n"); | |
| LOG_INF("%s\n", common_params_get_system_info(params).c_str()); | |
| } | |
| if (params.prompt.empty()) { | |
| if (params.in_files.empty()) { | |
| LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n"); | |
| return 1; | |
| } | |
| LOG_INF("No prompt provided; combining precomputed matrices only.\n"); | |
| } else { | |
| if (!compute_imatrix(ctx, params)) { | |
| return 1; | |
| } | |
| } | |
| g_collector.save_imatrix(); | |
| LOG("\n"); | |
| llama_perf_context_print(ctx); | |
| llama_backend_free(); | |
| return 0; | |
| } | |