Spaces:
Build error
Build error
| from __future__ import annotations | |
| import logging | |
| import os | |
| import shutil | |
| import struct | |
| import tempfile | |
| from dataclasses import dataclass | |
| from enum import Enum, auto | |
| from math import prod | |
| from pathlib import Path | |
| from io import BufferedWriter | |
| from typing import IO, Any, Sequence, Mapping | |
| from string import ascii_letters, digits | |
| import numpy as np | |
| from .constants import ( | |
| GGUF_DEFAULT_ALIGNMENT, | |
| GGUF_MAGIC, | |
| GGUF_VERSION, | |
| GGMLQuantizationType, | |
| GGUFEndian, | |
| GGUFValueType, | |
| Keys, | |
| RopeScalingType, | |
| PoolingType, | |
| TokenType, | |
| ExpertGatingFuncType, | |
| ) | |
| from .quants import quant_shape_from_byte_shape | |
| logger = logging.getLogger(__name__) | |
| SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf" | |
| class TensorInfo: | |
| shape: Sequence[int] | |
| dtype: GGMLQuantizationType | |
| nbytes: int | |
| tensor: np.ndarray[Any, Any] | None = None | |
| class GGUFValue: | |
| value: Any | |
| type: GGUFValueType | |
| class WriterState(Enum): | |
| NO_FILE = auto() | |
| EMPTY = auto() | |
| HEADER = auto() | |
| KV_DATA = auto() | |
| TI_DATA = auto() | |
| WEIGHTS = auto() | |
| class GGUFWriter: | |
| fout: list[BufferedWriter] | None | |
| path: Path | None | |
| temp_file: tempfile.SpooledTemporaryFile[bytes] | None | |
| tensors: list[dict[str, TensorInfo]] | |
| kv_data: list[dict[str, GGUFValue]] | |
| state: WriterState | |
| _simple_value_packing = { | |
| GGUFValueType.UINT8: "B", | |
| GGUFValueType.INT8: "b", | |
| GGUFValueType.UINT16: "H", | |
| GGUFValueType.INT16: "h", | |
| GGUFValueType.UINT32: "I", | |
| GGUFValueType.INT32: "i", | |
| GGUFValueType.FLOAT32: "f", | |
| GGUFValueType.UINT64: "Q", | |
| GGUFValueType.INT64: "q", | |
| GGUFValueType.FLOAT64: "d", | |
| GGUFValueType.BOOL: "?", | |
| } | |
| def __init__( | |
| self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE, | |
| split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False | |
| ): | |
| self.fout = None | |
| self.path = Path(path) if path else None | |
| self.arch = arch | |
| self.endianess = endianess | |
| self.data_alignment = GGUF_DEFAULT_ALIGNMENT | |
| self.use_temp_file = use_temp_file | |
| self.temp_file = None | |
| self.tensors = [{}] | |
| self.kv_data = [{}] | |
| self.split_max_tensors = split_max_tensors | |
| self.split_max_size = split_max_size | |
| self.dry_run = dry_run | |
| self.small_first_shard = small_first_shard | |
| logger.info("gguf: This GGUF file is for {0} Endian only".format( | |
| "Big" if self.endianess == GGUFEndian.BIG else "Little", | |
| )) | |
| self.state = WriterState.NO_FILE | |
| if self.small_first_shard: | |
| self.tensors.append({}) | |
| self.add_architecture() | |
| def get_total_parameter_count(self) -> tuple[int, int, int, int]: | |
| total_params = 0 | |
| shared_params = 0 | |
| expert_params = 0 | |
| expert_sum = 0 | |
| n_expert_tensors = 0 | |
| last_lora_a: tuple[str, TensorInfo] | None = None | |
| for tensors in self.tensors: | |
| for name, info in tensors.items(): | |
| shape = info.shape | |
| if name.endswith(".lora_a"): | |
| last_lora_a = (name, info) | |
| continue | |
| elif name.endswith(".lora_b"): | |
| if last_lora_a is None or last_lora_a[0] != name[:-1] + "a": | |
| # Bail when the LoRA pair can't be found trivially | |
| logger.warning("can't measure LoRA size correctly, tensor order is unusual") | |
| return 0, 0, 0, 0 | |
| else: | |
| shape = (*shape[:-1], last_lora_a[1].shape[-1]) | |
| size = prod(shape) | |
| if "_exps." in name: | |
| expert_params += (size // shape[-3]) | |
| expert_sum += shape[-3] | |
| n_expert_tensors += 1 | |
| else: | |
| shared_params += size | |
| total_params += size | |
| # Hopefully this should work even for variable-expert-count models | |
| expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0 | |
| # Negate the total to signal it's likely not exact | |
| if last_lora_a is not None: | |
| total_params = -total_params | |
| # NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py | |
| return total_params, shared_params, expert_params, expert_count | |
| def format_shard_names(self, path: Path) -> list[Path]: | |
| if len(self.tensors) == 1: | |
| return [path] | |
| return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))] | |
| def open_output_file(self, path: Path | None = None) -> None: | |
| if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path): | |
| # allow calling this multiple times as long as the path is the same | |
| return | |
| if self.state is not WriterState.NO_FILE: | |
| raise ValueError(f'Expected output file to be not yet opened, got {self.state}') | |
| if path is not None: | |
| self.path = path | |
| if self.path is not None: | |
| filenames = self.print_plan() | |
| self.fout = [open(filename, "wb") for filename in filenames] | |
| self.state = WriterState.EMPTY | |
| def print_plan(self) -> list[Path]: | |
| logger.info("Writing the following files:") | |
| assert self.path is not None | |
| filenames = self.format_shard_names(self.path) | |
| assert len(filenames) == len(self.tensors) | |
| for name, tensors in zip(filenames, self.tensors): | |
| logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}") | |
| if self.dry_run: | |
| logger.info("Dry run, not writing files") | |
| for name in filenames: | |
| print(name) # noqa: NP100 | |
| exit() | |
| return filenames | |
| def add_shard_kv_data(self) -> None: | |
| if len(self.tensors) == 1: | |
| return | |
| total_tensors = sum(len(t) for t in self.tensors) | |
| assert self.fout is not None | |
| total_splits = len(self.fout) | |
| self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits)) | |
| for i, kv_data in enumerate(self.kv_data): | |
| kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16) | |
| kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16) | |
| kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32) | |
| def write_header_to_file(self, path: Path | None = None) -> None: | |
| if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0): | |
| logger.warning("Model fails split requirements, not splitting") | |
| self.open_output_file(path) | |
| if self.state is not WriterState.EMPTY: | |
| raise ValueError(f'Expected output file to be empty, got {self.state}') | |
| assert self.fout is not None | |
| assert len(self.fout) == len(self.tensors) | |
| assert len(self.kv_data) == 1 | |
| self.add_shard_kv_data() | |
| for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data): | |
| fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True)) | |
| fout.write(self._pack("I", GGUF_VERSION)) | |
| fout.write(self._pack("Q", len(tensors))) | |
| fout.write(self._pack("Q", len(kv_data))) | |
| fout.flush() | |
| self.state = WriterState.HEADER | |
| def write_kv_data_to_file(self) -> None: | |
| if self.state is not WriterState.HEADER: | |
| raise ValueError(f'Expected output file to contain the header, got {self.state}') | |
| assert self.fout is not None | |
| for fout, kv_data in zip(self.fout, self.kv_data): | |
| kv_bytes = bytearray() | |
| for key, val in kv_data.items(): | |
| kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False) | |
| kv_bytes += self._pack_val(val.value, val.type, add_vtype=True) | |
| fout.write(kv_bytes) | |
| self.flush() | |
| self.state = WriterState.KV_DATA | |
| def write_ti_data_to_file(self) -> None: | |
| if self.state is not WriterState.KV_DATA: | |
| raise ValueError(f'Expected output file to contain KV data, got {self.state}') | |
| assert self.fout is not None | |
| for fout, tensors in zip(self.fout, self.tensors): | |
| ti_data = bytearray() | |
| offset_tensor = 0 | |
| for name, ti in tensors.items(): | |
| ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False) | |
| n_dims = len(ti.shape) | |
| ti_data += self._pack("I", n_dims) | |
| for j in range(n_dims): | |
| ti_data += self._pack("Q", ti.shape[n_dims - 1 - j]) | |
| ti_data += self._pack("I", ti.dtype) | |
| ti_data += self._pack("Q", offset_tensor) | |
| offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment) | |
| fout.write(ti_data) | |
| fout.flush() | |
| self.state = WriterState.TI_DATA | |
| def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None: | |
| if any(key in kv_data for kv_data in self.kv_data): | |
| raise ValueError(f'Duplicated key name {key!r}') | |
| self.kv_data[0][key] = GGUFValue(value=val, type=vtype) | |
| def add_uint8(self, key: str, val: int) -> None: | |
| self.add_key_value(key,val, GGUFValueType.UINT8) | |
| def add_int8(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.INT8) | |
| def add_uint16(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.UINT16) | |
| def add_int16(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.INT16) | |
| def add_uint32(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.UINT32) | |
| def add_int32(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.INT32) | |
| def add_float32(self, key: str, val: float) -> None: | |
| self.add_key_value(key, val, GGUFValueType.FLOAT32) | |
| def add_uint64(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.UINT64) | |
| def add_int64(self, key: str, val: int) -> None: | |
| self.add_key_value(key, val, GGUFValueType.INT64) | |
| def add_float64(self, key: str, val: float) -> None: | |
| self.add_key_value(key, val, GGUFValueType.FLOAT64) | |
| def add_bool(self, key: str, val: bool) -> None: | |
| self.add_key_value(key, val, GGUFValueType.BOOL) | |
| def add_string(self, key: str, val: str) -> None: | |
| if not val: | |
| return | |
| self.add_key_value(key, val, GGUFValueType.STRING) | |
| def add_array(self, key: str, val: Sequence[Any]) -> None: | |
| if len(val) == 0: | |
| return | |
| self.add_key_value(key, val, GGUFValueType.ARRAY) | |
| def ggml_pad(x: int, n: int) -> int: | |
| return ((x + n - 1) // n) * n | |
| def add_tensor_info( | |
| self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype, | |
| tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None, | |
| ) -> None: | |
| if self.state is not WriterState.NO_FILE: | |
| raise ValueError(f'Expected output file to be not yet opened, got {self.state}') | |
| if any(name in tensors for tensors in self.tensors): | |
| raise ValueError(f'Duplicated tensor name {name!r}') | |
| if raw_dtype is None: | |
| if tensor_dtype == np.float16: | |
| dtype = GGMLQuantizationType.F16 | |
| elif tensor_dtype == np.float32: | |
| dtype = GGMLQuantizationType.F32 | |
| elif tensor_dtype == np.float64: | |
| dtype = GGMLQuantizationType.F64 | |
| elif tensor_dtype == np.int8: | |
| dtype = GGMLQuantizationType.I8 | |
| elif tensor_dtype == np.int16: | |
| dtype = GGMLQuantizationType.I16 | |
| elif tensor_dtype == np.int32: | |
| dtype = GGMLQuantizationType.I32 | |
| elif tensor_dtype == np.int64: | |
| dtype = GGMLQuantizationType.I64 | |
| else: | |
| raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now") | |
| else: | |
| dtype = raw_dtype | |
| if tensor_dtype == np.uint8: | |
| tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype) | |
| # make sure there is at least one tensor before splitting | |
| if len(self.tensors[-1]) > 0: | |
| if ( # split when over tensor limit | |
| self.split_max_tensors != 0 | |
| and len(self.tensors[-1]) >= self.split_max_tensors | |
| ) or ( # split when over size limit | |
| self.split_max_size != 0 | |
| and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size | |
| ): | |
| self.tensors.append({}) | |
| self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes) | |
| def add_tensor( | |
| self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, | |
| raw_dtype: GGMLQuantizationType | None = None, | |
| ) -> None: | |
| if self.endianess == GGUFEndian.BIG: | |
| tensor.byteswap(inplace=True) | |
| if self.use_temp_file and self.temp_file is None: | |
| fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024) | |
| fp.seek(0) | |
| self.temp_file = fp | |
| shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape | |
| self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype) | |
| if self.temp_file is None: | |
| self.tensors[-1][name].tensor = tensor | |
| return | |
| tensor.tofile(self.temp_file) | |
| self.write_padding(self.temp_file, tensor.nbytes) | |
| def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None: | |
| pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n | |
| if pad != 0: | |
| fp.write(bytes([0] * pad)) | |
| def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None: | |
| if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS: | |
| raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}') | |
| assert self.fout is not None | |
| if self.endianess == GGUFEndian.BIG: | |
| tensor.byteswap(inplace=True) | |
| file_id = -1 | |
| for i, tensors in enumerate(self.tensors): | |
| if len(tensors) > 0: | |
| file_id = i | |
| break | |
| fout = self.fout[file_id] | |
| # pop the first tensor info | |
| # TODO: cleaner way to get the first key | |
| first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0] | |
| ti = self.tensors[file_id].pop(first_tensor_name) | |
| assert ti.nbytes == tensor.nbytes | |
| self.write_padding(fout, fout.tell()) | |
| tensor.tofile(fout) | |
| self.write_padding(fout, tensor.nbytes) | |
| self.state = WriterState.WEIGHTS | |
| def write_tensors_to_file(self, *, progress: bool = False) -> None: | |
| self.write_ti_data_to_file() | |
| assert self.fout is not None | |
| for fout in self.fout: | |
| self.write_padding(fout, fout.tell()) | |
| if self.temp_file is None: | |
| shard_bar = None | |
| bar = None | |
| if progress: | |
| from tqdm import tqdm | |
| total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values()) | |
| if len(self.fout) > 1: | |
| shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True) | |
| bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True) | |
| for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)): | |
| if shard_bar is not None: | |
| shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})") | |
| total = sum(ti.nbytes for ti in tensors.values()) | |
| shard_bar.reset(total=(total if total > 0 else None)) | |
| # relying on the fact that Python dicts preserve insertion order (since 3.7) | |
| for ti in tensors.values(): | |
| assert ti.tensor is not None # can only iterate once over the tensors | |
| assert ti.tensor.nbytes == ti.nbytes | |
| ti.tensor.tofile(fout) | |
| if shard_bar is not None: | |
| shard_bar.update(ti.nbytes) | |
| if bar is not None: | |
| bar.update(ti.nbytes) | |
| self.write_padding(fout, ti.nbytes) | |
| ti.tensor = None | |
| else: | |
| self.temp_file.seek(0) | |
| shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1]) | |
| self.flush() | |
| self.temp_file.close() | |
| self.state = WriterState.WEIGHTS | |
| def flush(self) -> None: | |
| assert self.fout is not None | |
| for fout in self.fout: | |
| fout.flush() | |
| def close(self) -> None: | |
| if self.fout is not None: | |
| for fout in self.fout: | |
| fout.close() | |
| self.fout = None | |
| def add_type(self, type_name: str) -> None: | |
| self.add_string(Keys.General.TYPE, type_name) | |
| def add_architecture(self) -> None: | |
| self.add_string(Keys.General.ARCHITECTURE, self.arch) | |
| def add_quantization_version(self, quantization_version: int) -> None: | |
| self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version) | |
| def add_custom_alignment(self, alignment: int) -> None: | |
| self.data_alignment = alignment | |
| self.add_uint32(Keys.General.ALIGNMENT, alignment) | |
| def add_file_type(self, ftype: int) -> None: | |
| self.add_uint32(Keys.General.FILE_TYPE, ftype) | |
| def add_name(self, name: str) -> None: | |
| self.add_string(Keys.General.NAME, name) | |
| def add_author(self, author: str) -> None: | |
| self.add_string(Keys.General.AUTHOR, author) | |
| def add_version(self, version: str) -> None: | |
| self.add_string(Keys.General.VERSION, version) | |
| def add_organization(self, organization: str) -> None: | |
| self.add_string(Keys.General.ORGANIZATION, organization) | |
| def add_finetune(self, finetune: str) -> None: | |
| self.add_string(Keys.General.FINETUNE, finetune) | |
| def add_basename(self, basename: str) -> None: | |
| self.add_string(Keys.General.BASENAME, basename) | |
| def add_description(self, description: str) -> None: | |
| self.add_string(Keys.General.DESCRIPTION, description) | |
| def add_quantized_by(self, quantized: str) -> None: | |
| self.add_string(Keys.General.QUANTIZED_BY, quantized) | |
| def add_size_label(self, size_label: str) -> None: | |
| self.add_string(Keys.General.SIZE_LABEL, size_label) | |
| def add_license(self, license: str) -> None: | |
| self.add_string(Keys.General.LICENSE, license) | |
| def add_license_name(self, license: str) -> None: | |
| self.add_string(Keys.General.LICENSE_NAME, license) | |
| def add_license_link(self, license: str) -> None: | |
| self.add_string(Keys.General.LICENSE_LINK, license) | |
| def add_url(self, url: str) -> None: | |
| self.add_string(Keys.General.URL, url) | |
| def add_doi(self, doi: str) -> None: | |
| self.add_string(Keys.General.DOI, doi) | |
| def add_uuid(self, uuid: str) -> None: | |
| self.add_string(Keys.General.UUID, uuid) | |
| def add_repo_url(self, repo_url: str) -> None: | |
| self.add_string(Keys.General.REPO_URL, repo_url) | |
| def add_source_url(self, url: str) -> None: | |
| self.add_string(Keys.General.SOURCE_URL, url) | |
| def add_source_doi(self, doi: str) -> None: | |
| self.add_string(Keys.General.SOURCE_DOI, doi) | |
| def add_source_uuid(self, uuid: str) -> None: | |
| self.add_string(Keys.General.SOURCE_UUID, uuid) | |
| def add_source_repo_url(self, repo_url: str) -> None: | |
| self.add_string(Keys.General.SOURCE_REPO_URL, repo_url) | |
| def add_base_model_count(self, source_count: int) -> None: | |
| self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count) | |
| def add_base_model_name(self, source_id: int, name: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name) | |
| def add_base_model_author(self, source_id: int, author: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author) | |
| def add_base_model_version(self, source_id: int, version: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version) | |
| def add_base_model_organization(self, source_id: int, organization: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization) | |
| def add_base_model_description(self, source_id: int, description: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_DESCRIPTION.format(id=source_id), description) | |
| def add_base_model_url(self, source_id: int, url: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url) | |
| def add_base_model_doi(self, source_id: int, doi: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi) | |
| def add_base_model_uuid(self, source_id: int, uuid: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid) | |
| def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None: | |
| self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url) | |
| def add_dataset_count(self, source_count: int) -> None: | |
| self.add_uint32(Keys.General.DATASET_COUNT, source_count) | |
| def add_dataset_name(self, source_id: int, name: str) -> None: | |
| self.add_string(Keys.General.DATASET_NAME.format(id=source_id), name) | |
| def add_dataset_author(self, source_id: int, author: str) -> None: | |
| self.add_string(Keys.General.DATASET_AUTHOR.format(id=source_id), author) | |
| def add_dataset_version(self, source_id: int, version: str) -> None: | |
| self.add_string(Keys.General.DATASET_VERSION.format(id=source_id), version) | |
| def add_dataset_organization(self, source_id: int, organization: str) -> None: | |
| self.add_string(Keys.General.DATASET_ORGANIZATION.format(id=source_id), organization) | |
| def add_dataset_description(self, source_id: int, description: str) -> None: | |
| self.add_string(Keys.General.DATASET_DESCRIPTION.format(id=source_id), description) | |
| def add_dataset_url(self, source_id: int, url: str) -> None: | |
| self.add_string(Keys.General.DATASET_URL.format(id=source_id), url) | |
| def add_dataset_doi(self, source_id: int, doi: str) -> None: | |
| self.add_string(Keys.General.DATASET_DOI.format(id=source_id), doi) | |
| def add_dataset_uuid(self, source_id: int, uuid: str) -> None: | |
| self.add_string(Keys.General.DATASET_UUID.format(id=source_id), uuid) | |
| def add_dataset_repo_url(self, source_id: int, repo_url: str) -> None: | |
| self.add_string(Keys.General.DATASET_REPO_URL.format(id=source_id), repo_url) | |
| def add_tags(self, tags: Sequence[str]) -> None: | |
| self.add_array(Keys.General.TAGS, tags) | |
| def add_languages(self, languages: Sequence[str]) -> None: | |
| self.add_array(Keys.General.LANGUAGES, languages) | |
| def add_tensor_data_layout(self, layout: str) -> None: | |
| self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) | |
| def add_vocab_size(self, size: int) -> None: | |
| self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size) | |
| def add_context_length(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length) | |
| def add_embedding_length(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length) | |
| def add_features_length(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length) | |
| def add_posnet_embedding_length(self, length: int) -> None: | |
| self.add_uint32(Keys.PosNet.EMBEDDING_LENGTH.format(arch=self.arch), length) | |
| def add_posnet_block_count(self, length: int) -> None: | |
| self.add_uint32(Keys.PosNet.BLOCK_COUNT.format(arch=self.arch), length) | |
| def add_convnext_embedding_length(self, length: int) -> None: | |
| self.add_uint32(Keys.ConvNext.EMBEDDING_LENGTH.format(arch=self.arch), length) | |
| def add_convnext_block_count(self, length: int) -> None: | |
| self.add_uint32(Keys.ConvNext.BLOCK_COUNT.format(arch=self.arch), length) | |
| def add_block_count(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length) | |
| def add_leading_dense_block_count(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length) | |
| def add_feed_forward_length(self, length: int | Sequence[int]) -> None: | |
| if isinstance(length, int): | |
| self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
| else: | |
| self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
| def add_expert_feed_forward_length(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
| def add_expert_shared_feed_forward_length(self, length: int) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length) | |
| def add_parallel_residual(self, use: bool) -> None: | |
| self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) | |
| def add_decoder_start_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id) | |
| def add_head_count(self, count: int | Sequence[int]) -> None: | |
| if isinstance(count, int): | |
| self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) | |
| else: | |
| self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) | |
| def add_head_count_kv(self, count: int | Sequence[int]) -> None: | |
| if isinstance(count, int): | |
| self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) | |
| else: | |
| self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) | |
| def add_key_length(self, length: int) -> None: | |
| self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length) | |
| def add_value_length(self, length: int) -> None: | |
| self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length) | |
| def add_max_alibi_bias(self, bias: float) -> None: | |
| self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias) | |
| def add_clamp_kqv(self, value: float) -> None: | |
| self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value) | |
| def add_logit_scale(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value) | |
| def add_attn_logit_softcapping(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value) | |
| def add_final_logit_softcapping(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value) | |
| def add_expert_count(self, count: int) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count) | |
| def add_expert_used_count(self, count: int) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count) | |
| def add_expert_shared_count(self, count: int) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) | |
| def add_expert_weights_scale(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) | |
| def add_expert_weights_norm(self, value: bool) -> None: | |
| self.add_bool(Keys.LLM.EXPERT_WEIGHTS_NORM.format(arch=self.arch), value) | |
| def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None: | |
| self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value) | |
| def add_swin_norm(self, value: bool) -> None: | |
| self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value) | |
| def add_rescale_every_n_layers(self, count: int) -> None: | |
| self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count) | |
| def add_time_mix_extra_dim(self, dim: int) -> None: | |
| self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim) | |
| def add_time_decay_extra_dim(self, dim: int) -> None: | |
| self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim) | |
| def add_residual_scale(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value) | |
| def add_embedding_scale(self, value: float) -> None: | |
| self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value) | |
| def add_wkv_head_size(self, size: int) -> None: | |
| self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size) | |
| def add_token_shift_count(self, count: int) -> None: | |
| self.add_uint32(Keys.LLM.TOKEN_SHIFT_COUNT.format(arch=self.arch), count) | |
| def add_layer_norm_eps(self, value: float) -> None: | |
| self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) | |
| def add_layer_norm_rms_eps(self, value: float) -> None: | |
| self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value) | |
| def add_group_norm_eps(self, value: float) -> None: | |
| self.add_float32(Keys.Attention.GROUPNORM_EPS.format(arch=self.arch), value) | |
| def add_group_norm_groups(self, value: int) -> None: | |
| self.add_uint32(Keys.Attention.GROUPNORM_GROUPS.format(arch=self.arch), value) | |
| def add_causal_attention(self, value: bool) -> None: | |
| self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) | |
| def add_q_lora_rank(self, length: int) -> None: | |
| self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length) | |
| def add_kv_lora_rank(self, length: int) -> None: | |
| self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length) | |
| def add_relative_attn_buckets_count(self, value: int) -> None: | |
| self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value) | |
| def add_sliding_window(self, value: int) -> None: | |
| self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value) | |
| def add_attention_scale(self, value: float) -> None: | |
| self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value) | |
| def add_pooling_type(self, value: PoolingType) -> None: | |
| self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) | |
| def add_rope_dimension_count(self, count: int) -> None: | |
| self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count) | |
| def add_rope_dimension_sections(self, dims: Sequence[int]) -> None: | |
| self.add_array(Keys.Rope.DIMENSION_SECTIONS.format(arch=self.arch), dims) | |
| def add_rope_freq_base(self, value: float) -> None: | |
| self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value) | |
| def add_rope_scaling_type(self, value: RopeScalingType) -> None: | |
| self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value) | |
| def add_rope_scaling_factor(self, value: float) -> None: | |
| self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value) | |
| def add_rope_scaling_attn_factors(self, value: float) -> None: | |
| self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value) | |
| def add_rope_scaling_orig_ctx_len(self, value: int) -> None: | |
| self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value) | |
| def add_rope_scaling_finetuned(self, value: bool) -> None: | |
| self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value) | |
| def add_rope_scaling_yarn_log_mul(self, value: float) -> None: | |
| self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value) | |
| def add_ssm_conv_kernel(self, value: int) -> None: | |
| self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value) | |
| def add_ssm_inner_size(self, value: int) -> None: | |
| self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value) | |
| def add_ssm_state_size(self, value: int) -> None: | |
| self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value) | |
| def add_ssm_time_step_rank(self, value: int) -> None: | |
| self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value) | |
| def add_ssm_dt_b_c_rms(self, value: bool) -> None: | |
| self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value) | |
| def add_tokenizer_model(self, model: str) -> None: | |
| self.add_string(Keys.Tokenizer.MODEL, model) | |
| def add_tokenizer_pre(self, pre: str) -> None: | |
| self.add_string(Keys.Tokenizer.PRE, pre) | |
| def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None: | |
| self.add_array(Keys.Tokenizer.LIST, tokens) | |
| def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None: | |
| self.add_array(Keys.Tokenizer.MERGES, merges) | |
| def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None: | |
| self.add_array(Keys.Tokenizer.TOKEN_TYPE, types) | |
| def add_token_type_count(self, value: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value) | |
| def add_token_scores(self, scores: Sequence[float]) -> None: | |
| self.add_array(Keys.Tokenizer.SCORES, scores) | |
| def add_bos_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.BOS_ID, id) | |
| def add_eos_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.EOS_ID, id) | |
| def add_unk_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.UNK_ID, id) | |
| def add_sep_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.SEP_ID, id) | |
| def add_pad_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.PAD_ID, id) | |
| def add_mask_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.MASK_ID, id) | |
| def add_add_bos_token(self, value: bool) -> None: | |
| self.add_bool(Keys.Tokenizer.ADD_BOS, value) | |
| def add_add_eos_token(self, value: bool) -> None: | |
| self.add_bool(Keys.Tokenizer.ADD_EOS, value) | |
| def add_add_space_prefix(self, value: bool) -> None: | |
| self.add_bool(Keys.Tokenizer.ADD_PREFIX, value) | |
| def add_remove_extra_whitespaces(self, value: bool) -> None: | |
| self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value) | |
| def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None: | |
| self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap) | |
| def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None: | |
| if not isinstance(value, str): | |
| template_default = None | |
| template_names = set() | |
| for choice in value: | |
| name = choice.get('name', '') | |
| template = choice.get('template') | |
| # Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it | |
| name = ''.join((c if c in ascii_letters + digits else '_' for c in name)) | |
| if name and template is not None: | |
| if name == 'default': | |
| template_default = template | |
| else: | |
| template_names.add(name) | |
| self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template) | |
| if template_names: | |
| self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names)) | |
| if template_default is None: | |
| return | |
| value = template_default | |
| self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value) | |
| def add_eot_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.EOT_ID, id) | |
| def add_eom_token_id(self, id: int) -> None: | |
| self.add_uint32(Keys.Tokenizer.EOM_ID, id) | |
| def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: | |
| pack_prefix = '' | |
| if not skip_pack_prefix: | |
| pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>' | |
| return struct.pack(f'{pack_prefix}{fmt}', value) | |
| def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes: | |
| kv_data = bytearray() | |
| if add_vtype: | |
| kv_data += self._pack("I", vtype) | |
| pack_fmt = self._simple_value_packing.get(vtype) | |
| if pack_fmt is not None: | |
| kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL) | |
| elif vtype == GGUFValueType.STRING: | |
| encoded_val = val.encode("utf-8") if isinstance(val, str) else val | |
| kv_data += self._pack("Q", len(encoded_val)) | |
| kv_data += encoded_val | |
| elif vtype == GGUFValueType.ARRAY: | |
| if not isinstance(val, Sequence): | |
| raise ValueError("Invalid GGUF metadata array, expecting sequence") | |
| if len(val) == 0: | |
| raise ValueError("Invalid GGUF metadata array. Empty array") | |
| if isinstance(val, bytes): | |
| ltype = GGUFValueType.UINT8 | |
| else: | |
| ltype = GGUFValueType.get_type(val[0]) | |
| if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): | |
| raise ValueError("All items in a GGUF array should be of the same type") | |
| kv_data += self._pack("I", ltype) | |
| kv_data += self._pack("Q", len(val)) | |
| for item in val: | |
| kv_data += self._pack_val(item, ltype, add_vtype=False) | |
| else: | |
| raise ValueError("Invalid GGUF metadata value type or value") | |
| return kv_data | |
| def format_n_bytes_to_str(num: int) -> str: | |
| if num == 0: | |
| return "negligible - metadata only" | |
| fnum = float(num) | |
| for unit in ("", "K", "M", "G"): | |
| if abs(fnum) < 1000.0: | |
| return f"{fnum:3.1f}{unit}" | |
| fnum /= 1000.0 | |
| return f"{fnum:.1f}T - over 1TB, split recommended" | |