Spaces:
Build error
Build error
| // the ring buffer works similarly to std::deque, but with a fixed capacity | |
| template<typename T> | |
| struct ring_buffer { | |
| ring_buffer(size_t cap) : capacity(cap), data(cap) {} | |
| T & front() { | |
| if (sz == 0) { | |
| throw std::runtime_error("ring buffer is empty"); | |
| } | |
| return data[first]; | |
| } | |
| const T & front() const { | |
| if (sz == 0) { | |
| throw std::runtime_error("ring buffer is empty"); | |
| } | |
| return data[first]; | |
| } | |
| T & back() { | |
| if (sz == 0) { | |
| throw std::runtime_error("ring buffer is empty"); | |
| } | |
| return data[pos]; | |
| } | |
| const T & back() const { | |
| if (sz == 0) { | |
| throw std::runtime_error("ring buffer is empty"); | |
| } | |
| return data[pos]; | |
| } | |
| void push_back(const T & value) { | |
| if (capacity == 0) { | |
| throw std::runtime_error("ring buffer: capacity is zero"); | |
| } | |
| if (sz == capacity) { | |
| // advance the start when buffer is full | |
| first = (first + 1) % capacity; | |
| } else { | |
| sz++; | |
| } | |
| data[pos] = value; | |
| pos = (pos + 1) % capacity; | |
| } | |
| T pop_front() { | |
| if (sz == 0) { | |
| throw std::runtime_error("ring buffer is empty"); | |
| } | |
| T value = data[first]; | |
| first = (first + 1) % capacity; | |
| sz--; | |
| return value; | |
| } | |
| //T & operator[](size_t i) { | |
| // if (i >= sz) { | |
| // throw std::runtime_error("ring buffer: index out of bounds"); | |
| // } | |
| // return data[(first + i) % capacity]; | |
| //} | |
| //const T & at(size_t i) const { | |
| // if (i >= sz) { | |
| // throw std::runtime_error("ring buffer: index out of bounds"); | |
| // } | |
| // return data[(first + i) % capacity]; | |
| //} | |
| const T & rat(size_t i) const { | |
| if (i >= sz) { | |
| throw std::runtime_error("ring buffer: index out of bounds"); | |
| } | |
| return data[(first + sz - i - 1) % capacity]; | |
| } | |
| std::vector<T> to_vector() const { | |
| std::vector<T> result; | |
| result.reserve(sz); | |
| for (size_t i = 0; i < sz; i++) { | |
| result.push_back(data[(first + i) % capacity]); | |
| } | |
| return result; | |
| } | |
| void clear() { | |
| // here only reset the status of the buffer | |
| sz = 0; | |
| first = 0; | |
| pos = 0; | |
| } | |
| bool empty() const { | |
| return sz == 0; | |
| } | |
| size_t size() const { | |
| return sz; | |
| } | |
| size_t capacity = 0; | |
| size_t sz = 0; | |
| size_t first = 0; | |
| size_t pos = 0; | |
| std::vector<T> data; | |
| }; | |
| static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { | |
| // iterator for the probabilities | |
| struct probs_iterator { | |
| typedef std::input_iterator_tag iterator_category; | |
| typedef float value_type; | |
| typedef float * pointer; | |
| typedef float & reference; | |
| typedef ptrdiff_t difference_type; | |
| const llama_token_data * data; | |
| bool operator==(const probs_iterator & other) const { return data == other.data; } | |
| bool operator!=(const probs_iterator & other) const { return data != other.data; } | |
| const float & operator*() const { return data->p; } | |
| probs_iterator & operator++() { ++data; return *this; } | |
| probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; } | |
| }; | |
| std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size}); | |
| return dist(rng); | |
| } | |
| /* | |
| static void llama_log_softmax(float * array, size_t size) { | |
| float max_l = *std::max_element(array, array + size); | |
| float sum = 0.f; | |
| for (size_t i = 0; i < size; ++i) { | |
| float p = expf(array[i] - max_l); | |
| sum += p; | |
| array[i] = p; | |
| } | |
| for (size_t i = 0; i < size; ++i) { | |
| array[i] = logf(array[i] / sum); | |
| } | |
| } | |
| */ | |
| static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { | |
| if (temp <= 0.0f) { | |
| // find the token with the highest logit and set the rest to -inf | |
| size_t max_i = 0; | |
| float max_l = cur_p->data[0].logit; | |
| for (size_t i = 1; i < cur_p->size; ++i) { | |
| if (cur_p->data[i ].logit > max_l) { | |
| cur_p->data[max_i].logit = -INFINITY; | |
| max_i = i; | |
| max_l = cur_p->data[i].logit; | |
| } else { | |
| cur_p->data[i].logit = -INFINITY; | |
| } | |
| } | |
| return; | |
| } | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].logit /= temp; | |
| } | |
| } | |
| static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { | |
| GGML_ASSERT(cur_p->size > 0); | |
| // Sort the logits in descending order | |
| if (!cur_p->sorted) { | |
| std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { | |
| return a.logit > b.logit; | |
| }); | |
| cur_p->sorted = true; | |
| } | |
| float max_l = cur_p->data[0].logit; | |
| float cum_sum = 0.0f; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| float p = expf(cur_p->data[i].logit - max_l); | |
| cur_p->data[i].p = p; | |
| cum_sum += p; | |
| } | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].p /= cum_sum; | |
| } | |
| } | |
| static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { | |
| // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast | |
| // if (k >= (int32_t)cur_p->size) { | |
| // return; | |
| // } | |
| if (k <= 0) { | |
| k = cur_p->size; | |
| } | |
| k = std::min(k, (int) cur_p->size); | |
| // Sort scores in descending order | |
| if (!cur_p->sorted) { | |
| auto comp = [](const llama_token_data & a, const llama_token_data & b) { | |
| return a.logit > b.logit; | |
| }; | |
| if (k <= 128) { | |
| std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); | |
| } else { | |
| constexpr int nbuckets = 128; | |
| constexpr float bucket_low = -10.0f; | |
| constexpr float bucket_high = 10.0f; | |
| constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); | |
| constexpr float bucket_inter = -bucket_low * bucket_scale; | |
| std::vector<int> bucket_idx(cur_p->size); | |
| std::vector<int> histo(nbuckets, 0); | |
| for (int i = 0; i < (int)cur_p->size; ++i) { | |
| const float val = cur_p->data[i].logit; | |
| int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); | |
| ib = std::max(0, std::min(nbuckets - 1, ib)); | |
| bucket_idx[i] = ib; | |
| ++histo[ib]; | |
| } | |
| int nhave = 0; | |
| int ib = nbuckets - 1; | |
| for ( ; ib >= 0; --ib) { | |
| nhave += histo[ib]; | |
| if (nhave >= k) { | |
| break; | |
| } | |
| } | |
| std::vector<llama_token_data> tmp_tokens(nhave); | |
| auto * ptr = tmp_tokens.data(); | |
| std::vector<llama_token_data*> bucket_ptrs; | |
| bucket_ptrs.reserve(nbuckets - ib); | |
| for (int j = nbuckets - 1; j >= ib; --j) { | |
| bucket_ptrs.push_back(ptr); | |
| ptr += histo[j]; | |
| } | |
| for (int i = 0; i < (int)cur_p->size; ++i) { | |
| int j = bucket_idx[i]; | |
| if (j >= ib) { | |
| *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i]; | |
| } | |
| } | |
| ptr = tmp_tokens.data(); | |
| int ndone = 0; | |
| for (int j = nbuckets - 1; j > ib; --j) { | |
| std::sort(ptr, ptr + histo[j], comp); | |
| ptr += histo[j]; | |
| ndone += histo[j]; | |
| } | |
| std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); | |
| std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); | |
| } | |
| cur_p->sorted = true; | |
| } | |
| cur_p->size = k; | |
| } | |
| static uint32_t get_rng_seed(uint32_t seed) { | |
| if (seed == LLAMA_DEFAULT_SEED) { | |
| // use system clock if std::random_device is not a true RNG | |
| static bool is_rd_prng = std::random_device().entropy() == 0; | |
| if (is_rd_prng) { | |
| return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count(); | |
| } | |
| std::random_device rd; | |
| return rd(); | |
| } | |
| return seed; | |
| } | |
| // llama_sampler API | |
| const char * llama_sampler_name(const struct llama_sampler * smpl) { | |
| if (!smpl->iface) { | |
| return "(null)"; | |
| } | |
| return smpl->iface->name(smpl); | |
| } | |
| void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { | |
| if (smpl->iface->accept) { | |
| smpl->iface->accept(smpl, token); | |
| } | |
| } | |
| void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { | |
| GGML_ASSERT(smpl->iface->apply); | |
| smpl->iface->apply(smpl, cur_p); | |
| } | |
| void llama_sampler_reset(struct llama_sampler * smpl) { | |
| if (smpl->iface->reset) { | |
| smpl->iface->reset(smpl); | |
| } | |
| } | |
| struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { | |
| if (smpl->iface->clone) { | |
| return smpl->iface->clone(smpl); | |
| } | |
| if (smpl->ctx == nullptr) { | |
| return new llama_sampler { | |
| /* .iface = */ smpl->iface, | |
| /* .ctx = */ nullptr, | |
| }; | |
| } | |
| GGML_ABORT("the sampler does not support cloning"); | |
| } | |
| void llama_sampler_free(struct llama_sampler * smpl) { | |
| if (smpl == nullptr) { | |
| return; | |
| } | |
| if (smpl->iface->free) { | |
| smpl->iface->free(smpl); | |
| } | |
| delete smpl; | |
| } | |
| llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { | |
| const auto * logits = llama_get_logits_ith(ctx, idx); | |
| const llama_model * model = llama_get_model(ctx); | |
| const llama_vocab * vocab = llama_model_get_vocab(model); | |
| const int n_vocab = llama_vocab_n_tokens(vocab); | |
| // TODO: do not allocate each time | |
| std::vector<llama_token_data> cur; | |
| cur.reserve(n_vocab); | |
| for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
| cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
| } | |
| llama_token_data_array cur_p = { | |
| /* .data = */ cur.data(), | |
| /* .size = */ cur.size(), | |
| /* .selected = */ -1, | |
| /* .sorted = */ false, | |
| }; | |
| llama_sampler_apply(smpl, &cur_p); | |
| GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); | |
| auto token = cur_p.data[cur_p.selected].id; | |
| llama_sampler_accept(smpl, token); | |
| return token; | |
| } | |
| // sampler chain | |
| static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) { | |
| return "chain"; | |
| } | |
| static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) { | |
| auto * chain = (llama_sampler_chain *) smpl->ctx; | |
| time_meas tm(chain->t_sample_us, chain->params.no_perf); | |
| for (auto * smpl : chain->samplers) { | |
| llama_sampler_accept(smpl, token); | |
| } | |
| chain->n_sample++; | |
| } | |
| static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * chain = (llama_sampler_chain *) smpl->ctx; | |
| time_meas tm(chain->t_sample_us, chain->params.no_perf); | |
| for (auto * smpl : chain->samplers) { | |
| llama_sampler_apply(smpl, cur_p); | |
| } | |
| } | |
| static void llama_sampler_chain_reset(struct llama_sampler * smpl) { | |
| auto * chain = (llama_sampler_chain *) smpl->ctx; | |
| for (auto * smpl : chain->samplers) { | |
| llama_sampler_reset(smpl); | |
| } | |
| chain->t_sample_us = 0; | |
| chain->n_sample = 0; | |
| } | |
| static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) { | |
| const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; | |
| auto * result = llama_sampler_chain_init(chain_src->params); | |
| for (auto * smpl : chain_src->samplers) { | |
| llama_sampler_chain_add(result, llama_sampler_clone(smpl)); | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_chain_free(struct llama_sampler * smpl) { | |
| auto * chain = (llama_sampler_chain *) smpl->ctx; | |
| for (auto * smpl : chain->samplers) { | |
| llama_sampler_free(smpl); | |
| } | |
| delete chain; | |
| } | |
| static struct llama_sampler_i llama_sampler_chain_i = { | |
| /* .name = */ llama_sampler_chain_name, | |
| /* .accept = */ llama_sampler_chain_accept, | |
| /* .apply = */ llama_sampler_chain_apply, | |
| /* .reset = */ llama_sampler_chain_reset, | |
| /* .clone = */ llama_sampler_chain_clone, | |
| /* .free = */ llama_sampler_chain_free, | |
| }; | |
| struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_chain_i, | |
| /* .ctx = */ new llama_sampler_chain { | |
| /* .params = */ params, | |
| /* .samplers = */ {}, | |
| /* .t_sample_us = */ 0, | |
| /* .n_sample = */ 0, | |
| }, | |
| }; | |
| } | |
| void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { | |
| auto * p = (llama_sampler_chain *) chain->ctx; | |
| p->samplers.push_back(smpl); | |
| } | |
| struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { | |
| const auto * p = (const llama_sampler_chain *) chain->ctx; | |
| if (i < 0 || (size_t) i >= p->samplers.size()) { | |
| return nullptr; | |
| } | |
| return p->samplers[i]; | |
| } | |
| struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) { | |
| auto * p = (llama_sampler_chain *) chain->ctx; | |
| if (i < 0 || (size_t) i >= p->samplers.size()) { | |
| return nullptr; | |
| } | |
| auto * result = p->samplers[i]; | |
| p->samplers.erase(p->samplers.begin() + i); | |
| return result; | |
| } | |
| int llama_sampler_chain_n(const struct llama_sampler * chain) { | |
| const auto * p = (const llama_sampler_chain *) chain->ctx; | |
| return p->samplers.size(); | |
| } | |
| // | |
| // samplers | |
| // | |
| // greedy | |
| static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) { | |
| return "greedy"; | |
| } | |
| static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { | |
| cur_p->selected = 0; | |
| for (size_t i = 1; i < cur_p->size; ++i) { | |
| if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { | |
| cur_p->selected = i; | |
| } | |
| } | |
| } | |
| static struct llama_sampler_i llama_sampler_greedy_i = { | |
| /* .name = */ llama_sampler_greedy_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_greedy_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ nullptr, | |
| /* .free = */ nullptr, | |
| }; | |
| struct llama_sampler * llama_sampler_init_greedy() { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_greedy_i, | |
| /* .ctx = */ nullptr, | |
| }; | |
| } | |
| // dist | |
| struct llama_sampler_dist { | |
| const uint32_t seed; | |
| uint32_t seed_cur; | |
| std::mt19937 rng; | |
| }; | |
| static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) { | |
| return "dist"; | |
| } | |
| static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_dist *) smpl->ctx; | |
| llama_sampler_softmax_impl(cur_p); | |
| cur_p->selected = llama_sample_dist(cur_p, ctx->rng); | |
| } | |
| static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_dist *) smpl->ctx; | |
| auto * result = llama_sampler_init_dist(ctx->seed); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_dist *) result->ctx; | |
| result_ctx->rng = ctx->rng; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_dist_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_dist *) smpl->ctx; | |
| ctx->seed_cur = get_rng_seed(ctx->seed); | |
| ctx->rng.seed(ctx->seed_cur); | |
| } | |
| static void llama_sampler_dist_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_dist *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_dist_i = { | |
| /* .name = */ llama_sampler_dist_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_dist_apply, | |
| /* .reset = */ llama_sampler_dist_reset, | |
| /* .clone = */ llama_sampler_dist_clone, | |
| /* .free = */ llama_sampler_dist_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { | |
| auto seed_cur = get_rng_seed(seed); | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_dist_i, | |
| /* .ctx = */ new llama_sampler_dist { | |
| /* .seed = */ seed, | |
| /* .seed_cur = */ seed_cur, | |
| /* .rng = */ std::mt19937(seed_cur), | |
| }, | |
| }; | |
| } | |
| // softmax | |
| static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) { | |
| return "softmax"; | |
| } | |
| static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { | |
| llama_sampler_softmax_impl(cur_p); | |
| } | |
| static struct llama_sampler_i llama_sampler_softmax_i = { | |
| /* .name = */ llama_sampler_softmax_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_softmax_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ nullptr, | |
| /* .free = */ nullptr, | |
| }; | |
| struct llama_sampler * llama_sampler_init_softmax() { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_softmax_i, | |
| /* .ctx = */ nullptr, | |
| }; | |
| } | |
| // top-k | |
| struct llama_sampler_top_k { | |
| const int32_t k; | |
| }; | |
| static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) { | |
| return "top-k"; | |
| } | |
| static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_top_k *) smpl->ctx; | |
| llama_sampler_top_k_impl(cur_p, ctx->k); | |
| } | |
| static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; | |
| return llama_sampler_init_top_k(ctx->k); | |
| } | |
| static void llama_sampler_top_k_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_top_k *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_top_k_i = { | |
| /* .name = */ llama_sampler_top_k_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_top_k_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_top_k_clone, | |
| /* .free = */ llama_sampler_top_k_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_top_k(int32_t k) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_top_k_i, | |
| /* .ctx = */ new llama_sampler_top_k { | |
| /* .k = */ k, | |
| }, | |
| }; | |
| } | |
| // top-p | |
| struct llama_sampler_top_p { | |
| const float p; | |
| const size_t min_keep; | |
| }; | |
| static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) { | |
| return "top-p"; | |
| } | |
| static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_top_p *) smpl->ctx; | |
| if (ctx->p >= 1.0f) { | |
| return; | |
| } | |
| llama_sampler_softmax_impl(cur_p); | |
| // Compute the cumulative probabilities | |
| float cum_sum = 0.0f; | |
| size_t last_idx = cur_p->size; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cum_sum += cur_p->data[i].p; | |
| // Check if the running sum is at least p or if we have kept at least min_keep tokens | |
| // we set the last index to i+1 to indicate that the current iterate should be included in the set | |
| if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) { | |
| last_idx = i + 1; | |
| break; | |
| } | |
| } | |
| // Resize the output vector to keep only the top-p tokens | |
| cur_p->size = last_idx; | |
| } | |
| static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; | |
| return llama_sampler_init_top_p(ctx->p, ctx->min_keep); | |
| } | |
| static void llama_sampler_top_p_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_top_p *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_top_p_i = { | |
| /* .name = */ llama_sampler_top_p_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_top_p_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_top_p_clone, | |
| /* .free = */ llama_sampler_top_p_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_top_p_i, | |
| /* .ctx = */ new llama_sampler_top_p { | |
| /* .p = */ p, | |
| /* .min_keep = */ min_keep, | |
| }, | |
| }; | |
| } | |
| // min-p | |
| struct llama_sampler_min_p { | |
| const float p; | |
| const size_t min_keep; | |
| }; | |
| static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) { | |
| return "min-p"; | |
| } | |
| static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_min_p *) smpl->ctx; | |
| if (ctx->p <= 0.0f || !cur_p->size) { | |
| return; | |
| } | |
| bool min_p_applied = false; | |
| // if the cur_p aren't sorted, try the unsorted implementation first | |
| if (!cur_p->sorted) { | |
| std::vector<llama_token_data> filtered_tokens; | |
| float max_logit = -FLT_MAX; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| max_logit = std::max(max_logit, cur_p->data[i].logit); | |
| } | |
| const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| if (cur_p->data[i].logit >= min_logit) { | |
| filtered_tokens.push_back(cur_p->data[i]); | |
| } | |
| } | |
| // if we have enough values the operation was a success | |
| if (filtered_tokens.size() >= ctx->min_keep) { | |
| memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); | |
| cur_p->size = filtered_tokens.size(); | |
| min_p_applied = true; | |
| } | |
| } | |
| // if the cur_p are sorted or the unsorted implementation failed, use this implementation | |
| if (!min_p_applied) { | |
| // Sort the logits in descending order | |
| if (!cur_p->sorted) { | |
| std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { | |
| return a.logit > b.logit; | |
| }); | |
| cur_p->sorted = true; | |
| } | |
| const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max | |
| size_t i = 1; // first token always matches | |
| for (; i < cur_p->size; ++i) { | |
| if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) { | |
| break; // prob too small | |
| } | |
| } | |
| // Resize the output vector to keep only the matching tokens | |
| cur_p->size = i; | |
| } | |
| } | |
| static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; | |
| return llama_sampler_init_min_p(ctx->p, ctx->min_keep); | |
| } | |
| static void llama_sampler_min_p_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_min_p *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_min_p_i = { | |
| /* .name = */ llama_sampler_min_p_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_min_p_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_min_p_clone, | |
| /* .free = */ llama_sampler_min_p_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_min_p_i, | |
| /* .ctx = */ new llama_sampler_min_p { | |
| /* .p = */ p, | |
| /* .min_keep = */ min_keep, | |
| }, | |
| }; | |
| } | |
| // typical | |
| struct llama_sampler_typical { | |
| const float p; | |
| const size_t min_keep; | |
| }; | |
| static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) { | |
| return "typical"; | |
| } | |
| static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_typical *) smpl->ctx; | |
| // Reference implementation: | |
| // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr | |
| if (ctx->p >= 1.0f) { | |
| return; | |
| } | |
| // Compute the softmax of logits and calculate entropy | |
| llama_sampler_softmax_impl(cur_p); | |
| float entropy = 0.0f; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); | |
| } | |
| // Compute the absolute difference between negative log probability and entropy for each candidate | |
| std::vector<float> shifted_scores; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); | |
| shifted_scores.push_back(shifted_score); | |
| } | |
| // Sort tokens based on the shifted_scores and their corresponding indices | |
| std::vector<size_t> indices(cur_p->size); | |
| std::iota(indices.begin(), indices.end(), 0); | |
| std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { | |
| return shifted_scores[a] < shifted_scores[b]; | |
| }); | |
| // Compute the cumulative probabilities | |
| float cum_sum = 0.0f; | |
| size_t last_idx = indices.size(); | |
| for (size_t i = 0; i < indices.size(); ++i) { | |
| size_t idx = indices[i]; | |
| cum_sum += cur_p->data[idx].p; | |
| // Check if the running sum is greater than typical or if we have kept at least min_keep tokens | |
| if (cum_sum > ctx->p && i >= ctx->min_keep - 1) { | |
| last_idx = i + 1; | |
| break; | |
| } | |
| } | |
| // Resize the output vector to keep only the locally typical tokens | |
| std::vector<llama_token_data> cur_p_new; | |
| for (size_t i = 0; i < last_idx; ++i) { | |
| size_t idx = indices[i]; | |
| cur_p_new.push_back(cur_p->data[idx]); | |
| } | |
| // Replace the data in cur_p with the cur_p_new data | |
| std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); | |
| cur_p->size = cur_p_new.size(); | |
| cur_p->sorted = false; | |
| } | |
| static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_typical *) smpl->ctx; | |
| return llama_sampler_init_typical(ctx->p, ctx->min_keep); | |
| } | |
| static void llama_sampler_typical_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_typical *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_typical_i = { | |
| /* .name = */ llama_sampler_typical_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_typical_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_typical_clone, | |
| /* .free = */ llama_sampler_typical_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_typical_i, | |
| /* .ctx = */ new llama_sampler_typical { | |
| /* .p = */ p, | |
| /* .min_keep = */ min_keep, | |
| }, | |
| }; | |
| } | |
| // temp | |
| struct llama_sampler_temp { | |
| const float temp; | |
| }; | |
| static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) { | |
| return "temp"; | |
| } | |
| static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_temp *) smpl->ctx; | |
| llama_sampler_temp_impl(cur_p, ctx->temp); | |
| } | |
| static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_temp *) smpl->ctx; | |
| return llama_sampler_init_temp(ctx->temp); | |
| } | |
| static void llama_sampler_temp_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_temp *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_temp_i = { | |
| /* .name = */ llama_sampler_temp_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_temp_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_temp_clone, | |
| /* .free = */ llama_sampler_temp_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_temp(float temp) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_temp_i, | |
| /* .ctx = */ new llama_sampler_temp { | |
| /*.temp = */ temp, | |
| }, | |
| }; | |
| } | |
| // temp-ext | |
| struct llama_sampler_temp_ext { | |
| const float temp; | |
| const float delta; | |
| const float exponent; | |
| }; | |
| static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) { | |
| return "temp-ext"; | |
| } | |
| static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; | |
| if (ctx->delta > 0) { | |
| const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); | |
| const float max_temp = ctx->temp + ctx->delta; | |
| float exponent_val = ctx->exponent; | |
| // no need to do anything if there is only one (or zero) candidates | |
| if (cur_p->size <= 1) { | |
| return; | |
| } | |
| // Calculate maximum possible entropy | |
| float max_entropy = -logf(1.0f / cur_p->size); | |
| llama_sampler_softmax_impl(cur_p); | |
| // Calculate entropy of the softmax probabilities | |
| float entropy = 0.0f; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| float prob = cur_p->data[i].p; | |
| if (prob > 0.0f) { // Ensure no log(0) | |
| entropy -= prob * logf(prob); | |
| } | |
| } | |
| // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above) | |
| float normalized_entropy = entropy / max_entropy; | |
| // Map the normalized entropy to the desired temperature range using the power function | |
| float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); | |
| LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); | |
| LLAMA_LOG_INFO("Entropy: %f\n", entropy); | |
| LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); | |
| LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); | |
| LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); | |
| LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); | |
| // Apply the dynamically calculated temperature scaling | |
| llama_sampler_temp_impl(cur_p, dyn_temp); | |
| // Re-compute softmax probabilities after scaling logits with dynamic temperature | |
| const double max_l_double = cur_p->data[0].logit; | |
| double cum_sum_double = 0.0; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| double p = exp(cur_p->data[i].logit - max_l_double); | |
| cur_p->data[i].p = p; // Store the scaled probability | |
| cum_sum_double += p; | |
| } | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities | |
| } | |
| // Print the updated top 25 probabilities after temperature scaling | |
| LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); | |
| for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { | |
| LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); | |
| } | |
| } else { | |
| llama_sampler_temp_impl(cur_p, ctx->temp); | |
| } | |
| } | |
| static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; | |
| return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); | |
| } | |
| static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_temp_ext *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_temp_ext_i = { | |
| /* .name = */ llama_sampler_temp_ext_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_temp_ext_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_temp_ext_clone, | |
| /* .free = */ llama_sampler_temp_ext_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_temp_ext_i, | |
| /* .ctx = */ new llama_sampler_temp_ext { | |
| /* .temp = */ temp, | |
| /* .delta = */ delta, | |
| /* .exponent = */ exponent, | |
| }, | |
| }; | |
| } | |
| // xtc | |
| struct llama_sampler_xtc { | |
| const float probability; | |
| const float threshold; | |
| const size_t min_keep; | |
| const uint32_t seed; | |
| uint32_t seed_cur; | |
| std::mt19937 rng; | |
| }; | |
| static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) { | |
| return "xtc"; | |
| } | |
| static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_xtc *) smpl->ctx; | |
| if (ctx->probability <= 0.0f | |
| || ctx->threshold > 0.5f | |
| || cur_p->size < 2) { | |
| return; | |
| } | |
| std::uniform_real_distribution<float> distribution(0.0f, 1.0f); | |
| float chance = distribution(ctx->rng); | |
| if (chance > ctx->probability) return; | |
| // in case it's not sorted/recalculated yet | |
| llama_sampler_softmax_impl(cur_p); | |
| int pos_last = 0; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| if (cur_p->data[i].p >= ctx->threshold) { | |
| pos_last = i; | |
| } else break; | |
| } | |
| if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { | |
| cur_p->data += pos_last; | |
| cur_p->size -= pos_last; | |
| } | |
| } | |
| static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; | |
| auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_xtc *) result->ctx; | |
| result_ctx->rng = ctx->rng; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_xtc_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_xtc *) smpl->ctx; | |
| } | |
| static void llama_sampler_xtc_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_xtc *) smpl->ctx; | |
| ctx->seed_cur = get_rng_seed(ctx->seed); | |
| ctx->rng.seed(ctx->seed_cur); | |
| } | |
| static struct llama_sampler_i llama_sampler_xtc_i = { | |
| /* .name = */ llama_sampler_xtc_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sample_xtc_apply, | |
| /* .reset = */ llama_sampler_xtc_reset, | |
| /* .clone = */ llama_sampler_xtc_clone, | |
| /* .free = */ llama_sampler_xtc_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) { | |
| auto seed_cur = get_rng_seed(seed); | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_xtc_i, | |
| /* .ctx = */ new llama_sampler_xtc { | |
| /* .probability = */ p, | |
| /* .threshold = */ t, | |
| /* .min_keep = */ min_keep, | |
| /* .seed = */ seed, | |
| /* .seed_cur = */ seed_cur, | |
| /* .rng = */ std::mt19937(seed_cur), | |
| }, | |
| }; | |
| } | |
| // mirostat | |
| struct llama_sampler_mirostat { | |
| const int32_t n_vocab; | |
| const uint32_t seed; | |
| uint32_t seed_cur; | |
| const float tau; | |
| const float eta; | |
| const int32_t m; | |
| float mu; | |
| std::mt19937 rng; | |
| }; | |
| static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) { | |
| return "mirostat"; | |
| } | |
| static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_mirostat *) smpl->ctx; | |
| llama_sampler_softmax_impl(cur_p); | |
| // Estimate s_hat using the most probable m tokens | |
| float s_hat = 0.0; | |
| float sum_ti_bi = 0.0; | |
| float sum_ti_sq = 0.0; | |
| for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { | |
| float t_i = logf(float(i + 2) / float(i + 1)); | |
| float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); | |
| sum_ti_bi += t_i * b_i; | |
| sum_ti_sq += t_i * t_i; | |
| } | |
| s_hat = sum_ti_bi / sum_ti_sq; | |
| // Compute k from the estimated s_hat and target surprise value | |
| float epsilon_hat = s_hat - 1; | |
| float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); | |
| llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); | |
| llama_sampler_softmax_impl(cur_p); | |
| const int idx = llama_sample_dist(cur_p, ctx->rng); | |
| cur_p->selected = idx; | |
| float observed_surprise = -log2f(cur_p->data[idx].p); | |
| float e = observed_surprise - ctx->tau; | |
| // Update mu using the learning rate and error | |
| ctx->mu = ctx->mu - ctx->eta * e; | |
| } | |
| static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; | |
| auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; | |
| result_ctx->mu = ctx->mu; | |
| result_ctx->rng = ctx->rng; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_mirostat *) smpl->ctx; | |
| ctx->mu = 2.0f*ctx->tau; | |
| ctx->seed_cur = get_rng_seed(ctx->seed); | |
| ctx->rng.seed(ctx->seed_cur); | |
| } | |
| static void llama_sampler_mirostat_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_mirostat *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_mirostat_i = { | |
| /* .name = */ llama_sampler_mirostat_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_mirostat_apply, | |
| /* .reset = */ llama_sampler_mirostat_reset, | |
| /* .clone = */ llama_sampler_mirostat_clone, | |
| /* .free = */ llama_sampler_mirostat_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { | |
| auto seed_cur = get_rng_seed(seed); | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_mirostat_i, | |
| /* .ctx = */ new llama_sampler_mirostat { | |
| /* .n_vocab = */ n_vocab, | |
| /* .seed = */ seed, | |
| /* .seed_cur = */ seed_cur, | |
| /* .tau = */ tau, | |
| /* .eta = */ eta, | |
| /* .m = */ m, | |
| /* .mu = */ 2.0f*tau, | |
| /* .rng = */ std::mt19937(seed_cur), | |
| }, | |
| }; | |
| } | |
| // mirostat v2 | |
| struct llama_sampler_mirostat_v2 { | |
| const uint32_t seed; | |
| uint32_t seed_cur; | |
| const float tau; | |
| const float eta; | |
| float mu; | |
| std::mt19937 rng; | |
| }; | |
| static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) { | |
| return "mirostat-v2"; | |
| } | |
| static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; | |
| llama_sampler_softmax_impl(cur_p); | |
| // Truncate the words with surprise values greater than mu | |
| cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { | |
| return -log2f(candidate.p) > ctx->mu; | |
| })); | |
| if (cur_p->size == 0) { | |
| cur_p->size = 1; | |
| } | |
| // Normalize the probabilities of the remaining words | |
| llama_sampler_softmax_impl(cur_p); | |
| const int idx = llama_sample_dist(cur_p, ctx->rng); | |
| cur_p->selected = idx; | |
| float observed_surprise = -log2f(cur_p->data[idx].p); | |
| float e = observed_surprise - ctx->tau; | |
| // Update mu using the learning rate and error | |
| ctx->mu = ctx->mu - ctx->eta * e; | |
| } | |
| static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; | |
| ctx->mu = 2.0f*ctx->tau; | |
| ctx->seed_cur = get_rng_seed(ctx->seed); | |
| ctx->rng.seed(ctx->seed_cur); | |
| } | |
| static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; | |
| auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; | |
| result_ctx->mu = ctx->mu; | |
| result_ctx->rng = ctx->rng; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_mirostat_v2 *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_mirostat_v2_i = { | |
| /* .name = */ llama_sampler_mirostat_v2_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_mirostat_v2_apply, | |
| /* .reset = */ llama_sampler_mirostat_v2_reset, | |
| /* .clone = */ llama_sampler_mirostat_v2_clone, | |
| /* .free = */ llama_sampler_mirostat_v2_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { | |
| auto seed_cur = get_rng_seed(seed); | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_mirostat_v2_i, | |
| /* .ctx = */ new llama_sampler_mirostat_v2 { | |
| /* .seed = */ seed, | |
| /* .seed_cur = */ seed_cur, | |
| /* .tau = */ tau, | |
| /* .eta = */ eta, | |
| /* .mu = */ 2.0f*tau, | |
| /* .rng = */ std::mt19937(seed_cur), | |
| }, | |
| }; | |
| } | |
| // grammar | |
| struct llama_sampler_grammar { | |
| const struct llama_vocab * vocab; | |
| std::string grammar_str; | |
| std::string grammar_root; | |
| struct llama_grammar * grammar; | |
| }; | |
| static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) { | |
| return "grammar"; | |
| } | |
| static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) { | |
| auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
| if (ctx->grammar) { | |
| llama_grammar_accept_impl(*ctx->grammar, token); | |
| } | |
| } | |
| static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
| if (ctx->grammar) { | |
| llama_grammar_apply_impl(*ctx->grammar, cur_p); | |
| } | |
| } | |
| // Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle. | |
| static struct llama_sampler * llama_sampler_init_grammar_impl( | |
| const struct llama_vocab * vocab, | |
| const char * grammar_str, | |
| const char * grammar_root, | |
| bool lazy, | |
| const char ** trigger_words, | |
| size_t num_trigger_words, | |
| const llama_token * trigger_tokens, | |
| size_t num_trigger_tokens); | |
| static void llama_sampler_grammar_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
| if (!ctx->grammar) { | |
| return; | |
| } | |
| std::vector<const char *> trigger_words; | |
| for (auto & word : ctx->grammar->trigger_words) { | |
| trigger_words.push_back(word.c_str()); | |
| } | |
| auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(), | |
| ctx->grammar->lazy, trigger_words.data(), trigger_words.size(), | |
| ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size()); | |
| llama_grammar_free_impl(ctx->grammar); | |
| ctx->grammar = grammar_new; | |
| } | |
| static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; | |
| auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_grammar *) result->ctx; | |
| if (ctx->grammar) { | |
| result_ctx->grammar_str = ctx->grammar_str; | |
| result_ctx->grammar_root = ctx->grammar_root; | |
| result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); | |
| } | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_grammar_free(struct llama_sampler * smpl) { | |
| const auto * ctx = (llama_sampler_grammar *) smpl->ctx; | |
| if (ctx->grammar) { | |
| llama_grammar_free_impl(ctx->grammar); | |
| } | |
| delete ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_grammar_i = { | |
| /* .name = */ llama_sampler_grammar_name, | |
| /* .accept = */ llama_sampler_grammar_accept_impl, | |
| /* .apply = */ llama_sampler_grammar_apply, | |
| /* .reset = */ llama_sampler_grammar_reset, | |
| /* .clone = */ llama_sampler_grammar_clone, | |
| /* .free = */ llama_sampler_grammar_free, | |
| }; | |
| static struct llama_sampler * llama_sampler_init_grammar_impl( | |
| const struct llama_vocab * vocab, | |
| const char * grammar_str, | |
| const char * grammar_root, | |
| bool lazy, | |
| const char ** trigger_words, | |
| size_t num_trigger_words, | |
| const llama_token * trigger_tokens, | |
| size_t num_trigger_tokens) { | |
| auto * ctx = new llama_sampler_grammar; | |
| if (grammar_str != nullptr && grammar_str[0] != '\0') { | |
| *ctx = { | |
| /* .vocab = */ vocab, | |
| /* .grammar_str = */ grammar_str, | |
| /* .grammar_root = */ grammar_root, | |
| /* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens), | |
| }; | |
| } else { | |
| *ctx = { | |
| /* .vocab = */ vocab, | |
| /* .grammar_str = */ {}, | |
| /* .grammar_root = */ {}, | |
| /* .grammar = */ nullptr, | |
| }; | |
| } | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_grammar_i, | |
| /* .ctx = */ ctx, | |
| }; | |
| } | |
| struct llama_sampler * llama_sampler_init_grammar( | |
| const struct llama_vocab * vocab, | |
| const char * grammar_str, | |
| const char * grammar_root) { | |
| return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0); | |
| } | |
| struct llama_sampler * llama_sampler_init_grammar_lazy( | |
| const struct llama_vocab * vocab, | |
| const char * grammar_str, | |
| const char * grammar_root, | |
| const char ** trigger_words, | |
| size_t num_trigger_words, | |
| const llama_token * trigger_tokens, | |
| size_t num_trigger_tokens) { | |
| return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens); | |
| } | |
| // penalties | |
| struct llama_sampler_penalties { | |
| const int32_t penalty_last_n; | |
| const float penalty_repeat; | |
| const float penalty_freq; | |
| const float penalty_present; | |
| ring_buffer<llama_token> prev; | |
| // a frequency map to count token occurrences | |
| std::unordered_map<llama_token, int> token_count; | |
| }; | |
| static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) { | |
| return "penalties"; | |
| } | |
| static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) { | |
| auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
| if (ctx->penalty_last_n == 0) { | |
| return; | |
| } | |
| ctx->token_count[token]++; | |
| // if the ring buffer is full, remove the oldest token | |
| if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) { | |
| const auto old = ctx->prev.front(); | |
| ctx->token_count[old]--; | |
| if (ctx->token_count[old] == 0) { | |
| ctx->token_count.erase(old); | |
| } | |
| } | |
| ctx->prev.push_back(token); | |
| // sanity check | |
| std::unordered_map<llama_token, int> tmp; | |
| for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) { | |
| tmp[ctx->prev.rat(i)]++; | |
| } | |
| assert(ctx->token_count == tmp); | |
| } | |
| static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
| if ((ctx->penalty_last_n == 0) || | |
| (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { | |
| return; | |
| } | |
| // Apply frequency and presence penalties to the cur_p | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| const auto token_iter = ctx->token_count.find(cur_p->data[i].id); | |
| if (token_iter == ctx->token_count.end()) { | |
| continue; | |
| } | |
| const int count = token_iter->second; | |
| assert(count > 0 && count <= ctx->penalty_last_n); | |
| // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. | |
| // This is common fix for this problem, which is to multiply by the penalty instead of dividing. | |
| if (cur_p->data[i].logit <= 0) { | |
| cur_p->data[i].logit *= ctx->penalty_repeat; | |
| } else { | |
| cur_p->data[i].logit /= ctx->penalty_repeat; | |
| } | |
| cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present; | |
| } | |
| cur_p->sorted = false; | |
| } | |
| static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_penalties *) smpl->ctx; | |
| ctx->prev.clear(); | |
| ctx->token_count.clear(); | |
| } | |
| static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; | |
| auto * result = llama_sampler_init_penalties( | |
| ctx->penalty_last_n, | |
| ctx->penalty_repeat, | |
| ctx->penalty_freq, | |
| ctx->penalty_present); | |
| // copy the state | |
| { | |
| auto * result_ctx = (llama_sampler_penalties *) result->ctx; | |
| result_ctx->prev = ctx->prev; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_penalties_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_penalties *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_penalties_i = { | |
| /* .name = */ llama_sampler_penalties_name, | |
| /* .accept = */ llama_sampler_penalties_accept, | |
| /* .apply = */ llama_sampler_penalties_apply, | |
| /* .reset = */ llama_sampler_penalties_reset, | |
| /* .clone = */ llama_sampler_penalties_clone, | |
| /* .free = */ llama_sampler_penalties_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_penalties( | |
| int32_t penalty_last_n, | |
| float penalty_repeat, | |
| float penalty_freq, | |
| float penalty_present) { | |
| penalty_last_n = std::max(penalty_last_n, 0); | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_penalties_i, | |
| /* .ctx = */ new llama_sampler_penalties { | |
| /* .penalty_last_n = */ penalty_last_n, | |
| /* .penalty_repeat = */ penalty_repeat, | |
| /* .penalty_freq = */ penalty_freq, | |
| /* .penalty_present = */ penalty_present, | |
| /* .prev = */ ring_buffer<llama_token>(penalty_last_n), | |
| /* .token_count = */ {}, | |
| }, | |
| }; | |
| } | |
| // DRY | |
| struct llama_sampler_dry { | |
| int32_t total_context_size; | |
| const float dry_multiplier; | |
| const float dry_base; | |
| const int32_t dry_allowed_length; | |
| const int32_t dry_penalty_last_n; | |
| std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers; | |
| std::vector<int> dry_repeat_count; | |
| std::unordered_map<llama_token, int> dry_max_token_repeat; | |
| ring_buffer<llama_token> last_tokens; | |
| }; | |
| // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) | |
| static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) { | |
| for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) { | |
| std::string word = vocab.detokenize({token_id}, true); | |
| if (word.find(str) != std::string::npos) { | |
| token_sequences.emplace(token_id, std::vector<llama_token>()); | |
| } else { | |
| size_t word_len = word.size(); | |
| size_t str_len = str.size(); | |
| size_t pos = -1; | |
| while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { | |
| bool match = true; | |
| size_t i; | |
| for (i = 1; i < str_len && i + pos < word_len; ++i) { | |
| if (word[pos + i] != str[i]) { | |
| match = false; | |
| break; | |
| } | |
| } | |
| if (match) { | |
| std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false); | |
| if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { | |
| tokenization.resize(max_tail_len); | |
| } | |
| // Ensure we don't already have a duplicate matching tokenization | |
| auto its = token_sequences.equal_range(token_id); | |
| bool found = false; | |
| for (auto it = its.first; it != its.second; ++it) { | |
| if (tokenization == it->second) { | |
| found = true; | |
| break; | |
| } | |
| } | |
| if (!found) { | |
| token_sequences.emplace(token_id, tokenization); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| } | |
| static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) { | |
| return "dry"; | |
| } | |
| static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) { | |
| auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
| if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { | |
| return; | |
| } | |
| ctx->last_tokens.push_back(token); | |
| } | |
| // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) | |
| static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
| if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { | |
| return; | |
| } | |
| int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0); | |
| int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size); | |
| if (last_n_repeat <= ctx->dry_allowed_length) { | |
| return; | |
| } | |
| ctx->dry_repeat_count.assign(last_n_repeat, 0); | |
| ctx->dry_max_token_repeat.clear(); | |
| // Step 1: Look for restart sequences to limit the maximum repetition length. | |
| // Work backwards through the context looking for any token that begins a restart sequence. | |
| // | |
| // The collection `restart_sequences` is a mapping from a "head" token to all "tail" | |
| // sequences that together comprise a restart sequence. This allows us to quickly check | |
| // whether each token is the head of a complete sequence. Most restart sequences are actually | |
| // a single token, and for these the "tail" is an empty vector. | |
| // | |
| // If the token is a "head", test all restart sequences that begin with this token | |
| // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and | |
| // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The | |
| // longest matching sequence (if any) is used to limit the maximum repetition length. | |
| // | |
| // Note that in the case case of a short sequence contained in a longer one, this might fail to | |
| // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as | |
| // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress | |
| // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare. | |
| // | |
| // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we | |
| // have already clamped the maximum tail sequence length when generating `restart_sequences`. | |
| // With clamping, this scan is O(N) in the context length. | |
| int rep_limit = last_n_repeat; | |
| for (int i = 0; i < last_n_repeat; ++i) { | |
| llama_token token = ctx->last_tokens.rat(i); | |
| auto its = ctx->dry_processed_breakers.equal_range(token); | |
| if (its.first == ctx->dry_processed_breakers.end()) { | |
| continue; | |
| } | |
| int longest_match = -1; | |
| for (auto it = its.first; it != its.second; ++it) { | |
| // Note that (*it) does not contain the head character, so seq_len will be | |
| // the restart sequence length minus 1. | |
| // In the common case of a single-token restart sequence, (*it) will be empty | |
| // and we will trivially match. | |
| int seq_len = (int)it->second.size(); | |
| if (seq_len > longest_match && seq_len <= (int)i) { | |
| bool match = true; | |
| for (int offset = 0; offset < seq_len; ++offset) { | |
| // The -1 when indexing `last_tokens` is because we already matched the head. | |
| if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) { | |
| match = false; | |
| break; | |
| } | |
| } | |
| if (match) { | |
| longest_match = seq_len; | |
| } | |
| } | |
| } | |
| if (longest_match >= 0) { | |
| // We found a restart sequence starting `i` tokens from the end and continuing for | |
| // `longest_match` tokens. | |
| rep_limit = i - longest_match; | |
| break; | |
| } | |
| } | |
| if (rep_limit < ctx->dry_allowed_length) { | |
| return; | |
| } | |
| // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in | |
| // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing | |
| // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences. | |
| // | |
| // This algorithm is not currently documented on Wikipedia, but there is a clear description here: | |
| // https://ivanyu.me/blog/2014/10/15/z-algorithm/ | |
| // | |
| // The code below is adapted from the public domain implementation by the same author here: | |
| // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py | |
| // | |
| // Example: | |
| // Last N tokens: a b c c b c y a b c | |
| // Repeat counts: 0 0 3 1 0 2 0 0 0 0 | |
| // ^ | |
| // This `3` means that the last three tokens of the context (a b c) also appear here. | |
| // | |
| // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested | |
| // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each | |
| // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables | |
| // ensure that the inner while loops only examine each token in the context once as the outer | |
| // for loop iterates over the context. | |
| { | |
| const int last = last_n_repeat - 1; | |
| int rt = 0, lt = 0; | |
| for (int k = 1; k < last_n_repeat; ++k) { | |
| if (k > rt) { | |
| // If k is outside the current Z-box, do naive computation. | |
| int n = 0; | |
| while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) { | |
| ++n; | |
| } | |
| ctx->dry_repeat_count[last - k] = std::min(n, rep_limit); | |
| if (n > 0) { | |
| lt = k; | |
| rt = k + n - 1; | |
| } | |
| } else { | |
| // If k is inside the current Z-box, consider two cases. | |
| int p = k - lt; // Pair index. | |
| int right_part_len = rt - k + 1; | |
| if (ctx->dry_repeat_count[last - p] < right_part_len) { | |
| int n = std::min(ctx->dry_repeat_count[last - p], rep_limit); | |
| ctx->dry_repeat_count[last - k] = n; | |
| } else { | |
| int i = rt + 1; | |
| while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) { | |
| i += 1; | |
| } | |
| int n = std::min(i - k, rep_limit); | |
| ctx->dry_repeat_count[last - k] = n; | |
| lt = k; | |
| rt = i - 1; | |
| } | |
| } | |
| } | |
| } | |
| // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length | |
| // that would be generated by emitting each new token that would extend a sequence. | |
| // | |
| // Following the same example as above: | |
| // Last N tokens: a b c c b c y a b c | |
| // Repeat counts: 0 0 3 1 0 2 0 0 0 0 | |
| // | |
| // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition. | |
| // c: 3 -> 4 (from `a b c` to `a b c c`) | |
| // b: 1 -> 2 (from `c` to `c b`) | |
| // y: 2 -> 3 (from `b c` to `b c y`) | |
| for (int i = 0; i < last_n_repeat - 1; ++i) { | |
| int repeat_len = ctx->dry_repeat_count[i]; | |
| if (repeat_len >= ctx->dry_allowed_length) { | |
| // This token ends a repeat, so the next token would continue one. | |
| // By convention, the value of `repeat_len` only includes the tokens currently | |
| // in the context, not the new token that would be added. | |
| llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i); | |
| // Track the maximum sequence ending in this token. | |
| const auto& it = ctx->dry_max_token_repeat.find(token); | |
| if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) { | |
| ctx->dry_max_token_repeat[token] = repeat_len; | |
| } | |
| } | |
| } | |
| // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens. | |
| // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`. | |
| // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()` | |
| const float FLOAT_MAX_LOG = 88.7228391f; | |
| int max_exponent = 0; | |
| if (ctx->dry_base > 1.000001f) { | |
| max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base); | |
| } | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id); | |
| if (af_kvp != ctx->dry_max_token_repeat.end()) { | |
| // Check all sequence breakers starting with this token | |
| auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id); | |
| bool is_single_token_breaker = false; | |
| for (auto it = range.first; it != range.second; ++it) { | |
| if (it->second.empty()) { | |
| is_single_token_breaker = true; | |
| break; | |
| } | |
| } | |
| // Apply penalty only if it's not a single-token sequence breaker | |
| if (!is_single_token_breaker) { | |
| int repeat_exp = af_kvp->second - ctx->dry_allowed_length; | |
| if (max_exponent > 0 && repeat_exp > max_exponent) { | |
| repeat_exp = max_exponent; | |
| } | |
| float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp); | |
| cur_p->data[i].logit -= penalty; | |
| } | |
| } | |
| } | |
| cur_p->sorted = false; | |
| } | |
| static void llama_sampler_dry_reset(struct llama_sampler * smpl) { | |
| auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
| ctx->last_tokens.clear(); | |
| ctx->dry_repeat_count.clear(); | |
| ctx->dry_max_token_repeat.clear(); | |
| } | |
| static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (llama_sampler_dry *) smpl->ctx; | |
| llama_vocab dummy_vocab; | |
| // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying | |
| auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); | |
| // Copy the state, including the processed breakers | |
| { | |
| auto * result_ctx = (llama_sampler_dry *) result->ctx; | |
| result_ctx->dry_processed_breakers = ctx->dry_processed_breakers; | |
| result_ctx->dry_repeat_count = ctx->dry_repeat_count; | |
| result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat; | |
| result_ctx->last_tokens = ctx->last_tokens; | |
| } | |
| return result; | |
| } | |
| static void llama_sampler_dry_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_dry *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_dry_i = { | |
| /* .name = */ llama_sampler_dry_name, | |
| /* .accept = */ llama_sampler_dry_accept, | |
| /* .apply = */ llama_sampler_dry_apply, | |
| /* .reset = */ llama_sampler_dry_reset, | |
| /* .clone = */ llama_sampler_dry_clone, | |
| /* .free = */ llama_sampler_dry_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { | |
| int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); | |
| std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers; | |
| const int MAX_CHAR_LEN = 40; | |
| const int MAX_SEQ_LEN = 20; | |
| const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); | |
| if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { | |
| // Process sequence breakers | |
| for (size_t i = 0; i < num_breakers; ++i) { | |
| if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { | |
| LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); | |
| continue; | |
| } | |
| std::string sequence_break(seq_breakers[i]); | |
| if (sequence_break.empty()) { | |
| LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); | |
| continue; | |
| } | |
| if (sequence_break.size() > MAX_CHAR_LEN) { | |
| LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); | |
| sequence_break.resize(MAX_CHAR_LEN); | |
| } | |
| get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); | |
| } | |
| } | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_dry_i, | |
| /* .ctx = */ new llama_sampler_dry { | |
| /* .total_context_size = */ context_size, | |
| /* .dry_multiplier = */ dry_multiplier, | |
| /* .dry_base = */ dry_base, | |
| /* .dry_allowed_length = */ dry_allowed_length, | |
| /* .dry_penalty_last_n = */ dry_penalty_last_n, | |
| /* .dry_processed_breakers = */ std::move(processed_breakers), | |
| /* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{}, | |
| /* .dry_max_token_repeat = */ {}, | |
| /* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0), | |
| }, | |
| }; | |
| } | |
| // wrapper for test-sampling.cpp | |
| struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) { | |
| llama_vocab dummy_vocab; | |
| auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0); | |
| auto * ctx = (llama_sampler_dry *) result->ctx; | |
| // Process the token-based sequence breakers | |
| ctx->dry_processed_breakers.clear(); | |
| if (seq_breakers.empty()) { | |
| LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n"); | |
| } else { | |
| for (const auto& breaker : seq_breakers) { | |
| if (breaker.empty()) { | |
| LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n"); | |
| continue; | |
| } | |
| llama_token head_token = breaker[0]; | |
| std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end()); | |
| ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens)); | |
| } | |
| if (ctx->dry_processed_breakers.empty()) { | |
| LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n"); | |
| } | |
| } | |
| return result; | |
| } | |
| // logit-bias | |
| struct llama_sampler_logit_bias { | |
| const int32_t n_vocab; | |
| const std::vector<llama_logit_bias> logit_bias; | |
| std::vector<llama_logit_bias> to_search; | |
| }; | |
| static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) { | |
| return "logit-bias"; | |
| } | |
| static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; | |
| if (ctx->logit_bias.empty()) { | |
| return; | |
| } | |
| ctx->to_search.clear(); | |
| // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id) | |
| for (const auto & lb : ctx->logit_bias) { | |
| if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { | |
| cur_p->data[lb.token].logit += lb.bias; | |
| } else { | |
| ctx->to_search.push_back(lb); | |
| } | |
| } | |
| if (ctx->to_search.empty()) { | |
| return; | |
| } | |
| // search for the remaining candidates that were not found in the previous step | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| for (const auto & lb : ctx->to_search) { | |
| if (cur_p->data[i].id == lb.token) { | |
| cur_p->data[i].logit += lb.bias; | |
| break; | |
| } | |
| } | |
| } | |
| } | |
| static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; | |
| return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); | |
| } | |
| static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_logit_bias *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_logit_bias_i = { | |
| /* .name = */ llama_sampler_logit_bias_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_logit_bias_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_logit_bias_clone, | |
| /* .free = */ llama_sampler_logit_bias_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_logit_bias( | |
| int32_t n_vocab, | |
| int32_t n_logit_bias, | |
| const llama_logit_bias * logit_bias) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_logit_bias_i, | |
| /* .ctx = */ new llama_sampler_logit_bias { | |
| /* .n_vocab = */ n_vocab, | |
| /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias), | |
| /* .to_search = */ {}, | |
| }, | |
| }; | |
| } | |
| // infill | |
| //#define GGML_DEBUG_SAMPLER_INFILL | |
| struct llama_sampler_infill { | |
| const struct llama_vocab * vocab; | |
| std::vector<char> buf0; | |
| std::vector<char> buf1; | |
| }; | |
| static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) { | |
| return "infill"; | |
| } | |
| static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { | |
| auto * ctx = (llama_sampler_infill *) smpl->ctx; | |
| llama_sampler_softmax_impl(cur_p); | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
| } | |
| float p_txt_sum = 0.0f; | |
| float p_eog_sum = 0.0f; | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| if (ctx->vocab->is_eog(cur_p->data[i].id)) { | |
| p_eog_sum += cur_p->data[i].p; | |
| } else { | |
| p_txt_sum += cur_p->data[i].p; | |
| } | |
| } | |
| const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat); | |
| LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size); | |
| if (3*p_eog_sum*cur_p->size > p_txt_sum) { | |
| LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum); | |
| // keep just the EOG tokens | |
| const auto size_org = cur_p->size; | |
| cur_p->size = 0; | |
| float p_sum = 0.0f; | |
| for (size_t i = 0; i < size_org; ++i) { | |
| if (ctx->vocab->is_eog(cur_p->data[i].id)) { | |
| p_sum += cur_p->data[i].p; | |
| cur_p->data[cur_p->size++] = cur_p->data[i]; | |
| } | |
| } | |
| // normalize probs | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].p /= p_sum; | |
| } | |
| return; | |
| } | |
| size_t n_combined = 0; GGML_UNUSED(n_combined); | |
| // combine tokens with common prefix | |
| for (size_t i0 = 0; i0 < cur_p->size; ++i0) { | |
| for (size_t i1 = 0; i1 < cur_p->size; ++i1) { | |
| if (cur_p->data[i0].logit == -INFINITY) { | |
| break; | |
| } | |
| if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) { | |
| continue; | |
| } | |
| int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); | |
| if (len0 < 0) { | |
| ctx->buf0.resize(len0); | |
| len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); | |
| assert(len0 > 0); | |
| } | |
| int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); | |
| if (len1 < 0) { | |
| ctx->buf1.resize(len1); | |
| len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); | |
| assert(len1 > 0); | |
| } | |
| // token i0 is a prefix of token i1 | |
| if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) { | |
| int dst = i0; | |
| int src = i1; | |
| // merge into the token with higher probability | |
| if (cur_p->data[i1].p > cur_p->data[i0].p) { | |
| std::swap(dst, src); | |
| } | |
| cur_p->data[dst].p += cur_p->data[src].p; | |
| cur_p->data[src].logit = -INFINITY; | |
| cur_p->data[src].p = 0.0f; | |
| n_combined++; | |
| } | |
| } | |
| } | |
| size_t n_non_eog = 0; | |
| size_t size_org = cur_p->size; | |
| float p_sum = 0.0f; | |
| float thold = 0.2f; | |
| cur_p->size = 0; | |
| LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold); | |
| for (size_t i = 0; i < size_org; ++i) { | |
| const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); | |
| if (cur_p->data[i].p < thold && !is_eog) { | |
| continue; | |
| } | |
| if (!is_eog) { | |
| ++n_non_eog; | |
| } | |
| p_sum += cur_p->data[i].p; | |
| // keep this token | |
| cur_p->data[cur_p->size++] = cur_p->data[i]; | |
| } | |
| LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog); | |
| // if no non-EOG tokens are left -> reduce cur_p to single EOT token | |
| if (n_non_eog == 0) { | |
| cur_p->size = 1; | |
| cur_p->data[0].id = ctx->vocab->token_eot(); | |
| cur_p->data[0].logit = 1.0f; | |
| return; | |
| } | |
| // normalize probs | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].p /= p_sum; | |
| LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
| } | |
| size_org = cur_p->size; | |
| p_sum = 0.0f; | |
| thold = 1.0/(n_non_eog + 1); | |
| cur_p->size = 0; | |
| LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold); | |
| for (size_t i = 0; i < size_org; ++i) { | |
| const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); | |
| if (cur_p->data[i].p < thold && !is_eog) { | |
| continue; | |
| } | |
| p_sum += cur_p->data[i].p; | |
| cur_p->data[cur_p->size++] = cur_p->data[i]; | |
| } | |
| // normalize probs | |
| for (size_t i = 0; i < cur_p->size; ++i) { | |
| cur_p->data[i].p /= p_sum; | |
| LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); | |
| } | |
| } | |
| static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) { | |
| const auto * ctx = (const llama_sampler_infill *) smpl->ctx; | |
| return llama_sampler_init_infill(ctx->vocab); | |
| } | |
| static void llama_sampler_infill_free(struct llama_sampler * smpl) { | |
| delete (llama_sampler_infill *) smpl->ctx; | |
| } | |
| static struct llama_sampler_i llama_sampler_infill_i = { | |
| /* .name = */ llama_sampler_infill_name, | |
| /* .accept = */ nullptr, | |
| /* .apply = */ llama_sampler_infill_apply, | |
| /* .reset = */ nullptr, | |
| /* .clone = */ llama_sampler_infill_clone, | |
| /* .free = */ llama_sampler_infill_free, | |
| }; | |
| struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) { | |
| return new llama_sampler { | |
| /* .iface = */ &llama_sampler_infill_i, | |
| /* .ctx = */ new llama_sampler_infill { | |
| /* .vocab = */ vocab, | |
| /* .buf0 = */ std::vector<char>(512), | |
| /* .buf1 = */ std::vector<char>(512), | |
| }, | |
| }; | |
| } | |
| // utils | |
| uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) { | |
| if (smpl->iface == &llama_sampler_dist_i) { | |
| return ((const llama_sampler_dist *) smpl->ctx)->seed_cur; | |
| } | |
| if (smpl->iface == &llama_sampler_mirostat_i) { | |
| return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur; | |
| } | |
| if (smpl->iface == &llama_sampler_mirostat_v2_i) { | |
| return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur; | |
| } | |
| if (smpl->iface == &llama_sampler_chain_i) { | |
| const auto * ctx = (const llama_sampler_chain *) smpl->ctx; | |
| for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) { | |
| const uint32_t seed = llama_sampler_get_seed(*it); | |
| if (seed != LLAMA_DEFAULT_SEED) { | |
| return seed; | |
| } | |
| } | |
| } | |
| return LLAMA_DEFAULT_SEED; | |
| } | |
| // perf | |
| struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) { | |
| struct llama_perf_sampler_data data = {}; | |
| if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { | |
| GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); | |
| } | |
| const auto * ctx = (const struct llama_sampler_chain *) chain->ctx; | |
| data.t_sample_ms = 1e-3 * ctx->t_sample_us; | |
| data.n_sample = std::max(0, ctx->n_sample); | |
| return data; | |
| } | |
| void llama_perf_sampler_print(const struct llama_sampler * chain) { | |
| const auto data = llama_perf_sampler(chain); | |
| LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", | |
| __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample); | |
| } | |
| void llama_perf_sampler_reset(struct llama_sampler * chain) { | |
| if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { | |
| GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); | |
| } | |
| auto * ctx = (struct llama_sampler_chain *) chain->ctx; | |
| ctx->t_sample_us = ctx->n_sample = 0; | |
| } | |