Spaces:
Build error
Build error
| constexpr int offset_has_kv = 1000; | |
| constexpr int offset_has_tensors = 2000; | |
| constexpr int offset_has_data = 3000; | |
| enum handcrafted_file_type { | |
| HANDCRAFTED_HEADER_BAD_MAGIC = 10, | |
| HANDCRAFTED_HEADER_BAD_VERSION_1 = 20, | |
| HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30, | |
| HANDCRAFTED_HEADER_BAD_N_TENSORS = 40, | |
| HANDCRAFTED_HEADER_BAD_N_KV = 50, | |
| HANDCRAFTED_HEADER_EMPTY = 800, | |
| HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv, | |
| HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv, | |
| // HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, // removed because it can result in allocations > 1 TB (default sanitizer limit) | |
| HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv, | |
| HANDCRAFTED_KV_BAD_ALIGN = 50 + offset_has_kv, | |
| HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv, | |
| HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_BAD_ALIGN = 75 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN = 80 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors, | |
| HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors, | |
| HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data, | |
| HANDCRAFTED_DATA_BAD_ALIGN = 15 + offset_has_data, | |
| HANDCRAFTED_DATA_INCONSISTENT_ALIGN = 20 + offset_has_data, | |
| HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data, | |
| HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data, | |
| }; | |
| static std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) { | |
| switch (hft) { | |
| case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC"; | |
| case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1"; | |
| case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE"; | |
| case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV"; | |
| case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS"; | |
| case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY"; | |
| case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE"; | |
| case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE"; | |
| case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY"; | |
| case HANDCRAFTED_KV_BAD_ALIGN: return "KV_BAD_ALIGN"; | |
| case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV"; | |
| case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE"; | |
| case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS"; | |
| case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE"; | |
| case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG"; | |
| case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE"; | |
| case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET"; | |
| case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME"; | |
| case HANDCRAFTED_TENSORS_BAD_ALIGN: return "TENSORS_BAD_ALIGN"; | |
| case HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN: return "TENSORS_INCONSISTENT_ALIGN"; | |
| case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS"; | |
| case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN"; | |
| case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA"; | |
| case HANDCRAFTED_DATA_BAD_ALIGN: return "DATA_BAD_ALIGN"; | |
| case HANDCRAFTED_DATA_INCONSISTENT_ALIGN: return "DATA_INCONSISTENT_ALIGN"; | |
| case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS"; | |
| case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN"; | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |
| static bool expect_context_not_null(const enum handcrafted_file_type hft) { | |
| if (hft < offset_has_kv) { | |
| return hft >= HANDCRAFTED_HEADER_EMPTY; | |
| } | |
| if (hft < offset_has_tensors) { | |
| return hft >= HANDCRAFTED_KV_SUCCESS; | |
| } | |
| if (hft < offset_has_data) { | |
| return hft >= HANDCRAFTED_TENSORS_SUCCESS; | |
| } | |
| return hft >= HANDCRAFTED_DATA_SUCCESS; | |
| } | |
| typedef std::pair<enum ggml_type, std::array<int64_t, GGML_MAX_DIMS>> tensor_config_t; | |
| static std::vector<tensor_config_t> get_tensor_configs(std::mt19937 & rng) { | |
| std::vector<tensor_config_t> tensor_configs; | |
| tensor_configs.reserve(100); | |
| for (int i = 0; i < 100; ++i) { | |
| const enum ggml_type type = ggml_type(rng() % GGML_TYPE_COUNT); | |
| if (ggml_type_size(type) == 0) { | |
| continue; | |
| } | |
| std::array<int64_t, GGML_MAX_DIMS> shape = {1, 1, 1, 1}; | |
| shape[0] = (1 + rng() % 10) * ggml_blck_size(type); | |
| const int n_dims = 1 + rng() % GGML_MAX_DIMS; | |
| for (int i = 1; i < n_dims; ++i) { | |
| shape[i] = 1 + rng() % 10; | |
| } | |
| tensor_configs.push_back(std::make_pair(type, shape)); | |
| } | |
| return tensor_configs; | |
| } | |
| static std::vector<std::pair<enum gguf_type, enum gguf_type>> get_kv_types(std::mt19937 rng) { | |
| std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types; | |
| kv_types.reserve(100); | |
| for (int i = 0; i < 100; ++i) { | |
| const gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT); | |
| if (type == GGUF_TYPE_ARRAY) { | |
| const gguf_type type_arr = gguf_type(rng() % GGUF_TYPE_COUNT); | |
| if (type_arr == GGUF_TYPE_ARRAY) { | |
| continue; | |
| } | |
| kv_types.push_back(std::make_pair(type, type_arr)); | |
| continue; | |
| } | |
| kv_types.push_back(std::make_pair(type, gguf_type(-1))); | |
| } | |
| std::shuffle(kv_types.begin(), kv_types.end(), rng); | |
| return kv_types; | |
| } | |
| template <typename T> | |
| static void helper_write(FILE * file, const T & val) { | |
| GGML_ASSERT(fwrite(&val, 1, sizeof(val), file) == sizeof(val)); | |
| } | |
| static void helper_write(FILE * file, const void * data, const size_t nbytes) { | |
| GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes); | |
| } | |
| static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) { | |
| FILE * file = tmpfile(); | |
| if (!file) { | |
| return file; | |
| } | |
| std::mt19937 rng(seed); | |
| uint32_t alignment = GGUF_DEFAULT_ALIGNMENT; | |
| if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) { | |
| const char bad_magic[4] = {'F', 'U', 'G', 'G'}; | |
| helper_write(file, bad_magic, sizeof(bad_magic)); | |
| } else { | |
| helper_write(file, GGUF_MAGIC, 4); | |
| } | |
| if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) { | |
| const uint32_t version = 1; | |
| helper_write(file, version); | |
| } else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) { | |
| const uint32_t version = GGUF_VERSION + 1; | |
| helper_write(file, version); | |
| } else { | |
| const uint32_t version = GGUF_VERSION; | |
| helper_write(file, version); | |
| } | |
| std::vector<tensor_config_t> tensor_configs; | |
| if (hft >= offset_has_tensors) { | |
| tensor_configs = get_tensor_configs(rng); | |
| } | |
| if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) { | |
| const uint64_t n_tensors = -1; | |
| helper_write(file, n_tensors); | |
| } else { | |
| const uint64_t n_tensors = tensor_configs.size(); | |
| helper_write(file, n_tensors); | |
| } | |
| std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types; | |
| if (hft >= offset_has_kv) { | |
| kv_types = get_kv_types(rng); | |
| } | |
| { | |
| uint64_t n_kv = kv_types.size(); | |
| if (hft == HANDCRAFTED_KV_BAD_ALIGN || | |
| hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || | |
| hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { | |
| n_kv += 1; | |
| } else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) { | |
| n_kv = -1; | |
| } | |
| helper_write(file, n_kv); | |
| } | |
| if (hft < offset_has_kv) { | |
| while (ftell(file) % alignment != 0) { | |
| const char pad = 0; | |
| helper_write(file, pad); | |
| } | |
| for (int i = 0; i < extra_bytes; ++i) { | |
| const char tmp = 0; | |
| helper_write(file, tmp); | |
| } | |
| rewind(file); | |
| return file; | |
| } | |
| for (int i = 0; i < int(kv_types.size()); ++i) { | |
| const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].first); | |
| const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].second); | |
| const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i)); | |
| if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) { | |
| const uint64_t n = -1; | |
| helper_write(file, n); | |
| } else { | |
| const uint64_t n = key.length(); | |
| helper_write(file, n); | |
| } | |
| helper_write(file, key.data(), key.length()); | |
| { | |
| const int32_t type32 = int32_t(type); | |
| helper_write(file, type32); | |
| } | |
| uint32_t data[16]; | |
| for (int j = 0; j < 16; ++j) { | |
| data[j] = rng(); | |
| if (type == GGUF_TYPE_STRING || type_arr == GGUF_TYPE_STRING) { | |
| data[j] |= 0x01010101; // avoid random null-termination of string | |
| } | |
| } | |
| if (type == GGUF_TYPE_STRING) { | |
| const uint64_t n = rng() % sizeof(data); | |
| helper_write(file, n); | |
| helper_write(file, data, n); | |
| continue; | |
| } | |
| if (type == GGUF_TYPE_ARRAY) { | |
| { | |
| const int32_t type32 = int32_t(type_arr); | |
| helper_write(file, type32); | |
| } | |
| if (type_arr == GGUF_TYPE_STRING) { | |
| const uint64_t nstr = rng() % (16 + 1); | |
| helper_write(file, nstr); | |
| for (uint64_t istr = 0; istr < nstr; ++istr) { | |
| const uint64_t n = rng() % (sizeof(uint32_t) + 1); | |
| helper_write(file, n); | |
| helper_write(file, &data[istr], n); | |
| } | |
| continue; | |
| } | |
| const size_t type_size = gguf_type_size(type_arr); | |
| const uint64_t n = (rng() % sizeof(data)) / type_size; | |
| helper_write(file, n); | |
| helper_write(file, &data, n*type_size); | |
| continue; | |
| } | |
| helper_write(file, data, hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type)); | |
| } | |
| if (hft == HANDCRAFTED_KV_BAD_ALIGN || | |
| hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || | |
| hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { | |
| const uint64_t n = strlen(GGUF_KEY_GENERAL_ALIGNMENT); | |
| helper_write(file, n); | |
| helper_write(file, GGUF_KEY_GENERAL_ALIGNMENT, n); | |
| const int32_t type = gguf_type(GGUF_TYPE_UINT32); | |
| helper_write(file, type); | |
| alignment = expect_context_not_null(hft) ? 1 : 13; | |
| helper_write(file, alignment); | |
| } | |
| if (hft < offset_has_tensors) { | |
| while (ftell(file) % alignment != 0) { | |
| const char pad = 0; | |
| helper_write(file, pad); | |
| } | |
| for (int i = 0; i < extra_bytes; ++i) { | |
| const char tmp = 0; | |
| helper_write(file, tmp); | |
| } | |
| rewind(file); | |
| return file; | |
| } | |
| if (hft == HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN || hft == HANDCRAFTED_DATA_INCONSISTENT_ALIGN) { | |
| alignment = 1; | |
| } | |
| uint64_t offset = 0; | |
| for (int i = 0; i < int(tensor_configs.size()); ++i) { | |
| const ggml_type type = tensor_configs[i].first; | |
| const std::array<int64_t, GGML_MAX_DIMS> shape = tensor_configs[i].second; | |
| std::string name = "my_tensor"; | |
| if (hft != HANDCRAFTED_TENSORS_DUPLICATE_NAME) { | |
| name += "_" + std::to_string(i); | |
| } | |
| if (hft == HANDCRAFTED_TENSORS_BAD_NAME_SIZE) { | |
| name += "_with_a_very_long_name_which_is_longer_than_what_is_allowed_for_ggml_tensors"; | |
| GGML_ASSERT(name.length() >= GGML_MAX_NAME); | |
| } | |
| { | |
| const uint64_t n = name.length(); | |
| helper_write(file, n); | |
| } | |
| helper_write(file, name.data(), name.length()); | |
| uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1; | |
| for (int i = GGML_MAX_DIMS-1; i >= 1; --i) { | |
| if (shape[i] != 1) { | |
| n_dims = i + 1; | |
| break; | |
| } | |
| } | |
| if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) { | |
| const uint32_t n_dims_bad = GGML_MAX_DIMS + 1; | |
| helper_write(file, n_dims_bad); | |
| } else { | |
| helper_write(file, n_dims); | |
| } | |
| if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) { | |
| for (uint32_t j = 0; j < n_dims; ++j) { | |
| const int64_t bad_dim = -1; | |
| helper_write(file, bad_dim); | |
| } | |
| } else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){ | |
| for (uint32_t j = 0; j < n_dims; ++j) { | |
| const int64_t big_dim = 4*int64_t(INT32_MAX); | |
| helper_write(file, big_dim); | |
| } | |
| } else { | |
| helper_write(file, shape.data(), n_dims*sizeof(int64_t)); | |
| } | |
| { | |
| const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? GGML_TYPE_COUNT : int32_t(type); | |
| helper_write(file, type32); | |
| } | |
| if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) { | |
| const uint64_t bad_offset = -1; | |
| helper_write(file, bad_offset); | |
| } else { | |
| helper_write(file, offset); | |
| } | |
| int64_t ne = shape[0]; | |
| for (uint32_t i = 1; i < n_dims; ++i) { | |
| ne *= shape[i]; | |
| } | |
| offset += GGML_PAD(ggml_row_size(type, ne), alignment); | |
| } | |
| while (ftell(file) % alignment != 0) { | |
| const char pad = 0; | |
| helper_write(file, pad); | |
| } | |
| if (hft >= offset_has_data) { | |
| rng.seed(seed + 1); | |
| uint64_t nbytes = offset; | |
| if (hft == HANDCRAFTED_DATA_NOT_ENOUGH_DATA) { | |
| nbytes -= 1; | |
| } | |
| for (uint64_t i = 0; i < nbytes; ++i) { | |
| const uint8_t random_byte = i % 256; | |
| helper_write(file, random_byte); | |
| } | |
| } | |
| for (int i = 0; i < extra_bytes; ++i) { | |
| const char tmp = 0; | |
| helper_write(file, tmp); | |
| } | |
| rewind(file); | |
| return file; | |
| } | |
| static bool handcrafted_check_header(const gguf_context * gguf_ctx, const unsigned int seed, const bool has_kv, const bool has_tensors, const bool alignment_defined) { | |
| if (!gguf_ctx) { | |
| return false; | |
| } | |
| std::mt19937 rng(seed); | |
| std::vector<tensor_config_t> tensor_configs; | |
| if (has_tensors) { | |
| tensor_configs = get_tensor_configs(rng); | |
| } | |
| std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types; | |
| if (has_kv) { | |
| kv_types = get_kv_types(rng); | |
| } | |
| bool ok = true; | |
| if (gguf_get_version(gguf_ctx) != GGUF_VERSION) { | |
| ok = false; | |
| } | |
| if (gguf_get_n_tensors(gguf_ctx) != int(tensor_configs.size())) { | |
| ok = false; | |
| } | |
| if (gguf_get_n_kv(gguf_ctx) != int(alignment_defined ? kv_types.size() + 1 : kv_types.size())) { | |
| ok = false; | |
| } | |
| return ok; | |
| } | |
| static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned int seed, const bool has_tensors, const bool alignment_defined) { | |
| if (!gguf_ctx) { | |
| return false; | |
| } | |
| std::mt19937 rng(seed); | |
| std::vector<tensor_config_t> tensor_configs; | |
| if (has_tensors) { | |
| tensor_configs = get_tensor_configs(rng); | |
| } | |
| std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types = get_kv_types(rng); | |
| bool ok = true; | |
| for (int i = 0; i < int(kv_types.size()); ++i) { | |
| const enum gguf_type type = gguf_type(kv_types[i].first); | |
| const enum gguf_type type_arr = gguf_type(kv_types[i].second); | |
| const std::string key = "my_key_" + std::to_string(i); | |
| uint32_t data[16]; | |
| for (int j = 0; j < 16; ++j) { | |
| data[j] = rng(); | |
| if (type == GGUF_TYPE_STRING || type_arr == GGUF_TYPE_STRING) { | |
| data[j] |= 0x01010101; // avoid random null-termination of string | |
| } | |
| } | |
| const char * data8 = reinterpret_cast<const char *>(data); | |
| const int id = gguf_find_key(gguf_ctx, key.c_str()); | |
| if (type == GGUF_TYPE_STRING) { | |
| const char * str = gguf_get_val_str(gguf_ctx, id); | |
| const uint64_t n = strlen(str); | |
| const uint64_t n_expected = rng() % sizeof(data); | |
| if (n != n_expected) { | |
| ok = false; | |
| continue; | |
| } | |
| if (!std::equal(str, str + n, data8)) { | |
| ok = false; | |
| } | |
| continue; | |
| } | |
| if (type == GGUF_TYPE_ARRAY) { | |
| const size_t type_size = gguf_type_size(type_arr); | |
| const uint64_t arr_n = gguf_get_arr_n(gguf_ctx, id); | |
| if (type_arr == GGUF_TYPE_STRING) { | |
| const uint64_t nstr_expected = rng() % (16 + 1); | |
| if (arr_n != nstr_expected) { | |
| ok = false; | |
| continue; | |
| } | |
| for (uint64_t istr = 0; istr < nstr_expected; ++istr) { | |
| const char * str = gguf_get_arr_str(gguf_ctx, id, istr); | |
| const uint64_t n = strlen(str); | |
| const uint64_t n_expected = rng() % (sizeof(uint32_t) + 1); | |
| if (n != n_expected) { | |
| ok = false; | |
| continue; | |
| } | |
| const char * str_expected = reinterpret_cast<const char *>(&data[istr]); | |
| if (strncmp(str, str_expected, n) != 0) { | |
| ok = false; | |
| continue; | |
| } | |
| } | |
| continue; | |
| } | |
| const uint64_t arr_n_expected = (rng() % sizeof(data)) / type_size; | |
| if (arr_n != arr_n_expected) { | |
| ok = false; | |
| continue; | |
| } | |
| const char * data_gguf = reinterpret_cast<const char *>(gguf_get_arr_data(gguf_ctx, id)); | |
| if (type_arr == GGUF_TYPE_BOOL) { | |
| for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) { | |
| if (bool(data8[arr_i]) != bool(data_gguf[arr_i])) { | |
| ok = false; | |
| } | |
| } | |
| continue; | |
| } | |
| if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) { | |
| ok = false; | |
| } | |
| continue; | |
| } | |
| const char * data_gguf = reinterpret_cast<const char *>(gguf_get_val_data(gguf_ctx, id)); | |
| if (type == GGUF_TYPE_BOOL) { | |
| if (bool(*data8) != bool(*data_gguf)) { | |
| ok = false; | |
| } | |
| continue; | |
| } | |
| if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) { | |
| ok = false; | |
| } | |
| } | |
| const uint32_t expected_alignment = alignment_defined ? 1 : GGUF_DEFAULT_ALIGNMENT; | |
| if (gguf_get_alignment(gguf_ctx) != expected_alignment) { | |
| ok = false; | |
| } | |
| return ok; | |
| } | |
| static bool handcrafted_check_tensors(const gguf_context * gguf_ctx, const unsigned int seed) { | |
| if (!gguf_ctx) { | |
| return false; | |
| } | |
| std::mt19937 rng(seed); | |
| std::vector<tensor_config_t> tensor_configs = get_tensor_configs(rng); | |
| // Call get_kv_types to get the same RNG state: | |
| get_kv_types(rng); | |
| bool ok = true; | |
| const int id_alignment = gguf_find_key(gguf_ctx, GGUF_KEY_GENERAL_ALIGNMENT); | |
| const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT; | |
| uint64_t expected_offset = 0; | |
| for (int i = 0; i < int(tensor_configs.size()); ++i) { | |
| const ggml_type type = tensor_configs[i].first; | |
| const std::array<int64_t, GGML_MAX_DIMS> shape = tensor_configs[i].second; | |
| const std::string name = "my_tensor_" + std::to_string(i); | |
| const int id = gguf_find_tensor(gguf_ctx, name.c_str()); | |
| if (id >= 0) { | |
| if (std::string(gguf_get_tensor_name(gguf_ctx, id)) != name) { | |
| ok = false; | |
| } | |
| if (gguf_get_tensor_type(gguf_ctx, id) != type) { | |
| ok = false; | |
| } | |
| } else { | |
| ok = false; | |
| continue; | |
| } | |
| const size_t offset = gguf_get_tensor_offset(gguf_ctx, id); | |
| if (offset != expected_offset) { | |
| ok = false; | |
| } | |
| int64_t ne = shape[0]; | |
| for (size_t j = 1; j < GGML_MAX_DIMS; ++j) { | |
| ne *= shape[j]; | |
| } | |
| expected_offset += GGML_PAD(ggml_row_size(type, ne), alignment); | |
| } | |
| return ok; | |
| } | |
| static bool handcrafted_check_tensor_data(const gguf_context * gguf_ctx, const unsigned int seed, FILE * file) { | |
| if (!gguf_ctx) { | |
| return false; | |
| } | |
| std::mt19937 rng(seed); | |
| std::vector<tensor_config_t> tensor_configs = get_tensor_configs(rng); | |
| bool ok = true; | |
| for (int i = 0; i < int(tensor_configs.size()); ++i) { | |
| const ggml_type type = tensor_configs[i].first; | |
| const std::array<int64_t, GGML_MAX_DIMS> shape = tensor_configs[i].second; | |
| int64_t ne = shape[0]; | |
| for (size_t j = 1; j < GGML_MAX_DIMS; ++j) { | |
| ne *= shape[j]; | |
| } | |
| const size_t size = ggml_row_size(type, ne); | |
| const std::string name = "my_tensor_" + std::to_string(i); | |
| const size_t offset = gguf_get_tensor_offset(gguf_ctx, gguf_find_tensor(gguf_ctx, name.c_str())); | |
| std::vector<uint8_t> data(size); | |
| GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0); | |
| GGML_ASSERT(fread(data.data(), 1, data.size(), file) == data.size()); | |
| for (size_t j = 0; j < size; ++j) { | |
| const uint8_t expected_byte = (j + offset) % 256; | |
| if (data[j] != expected_byte) { | |
| ok = false; | |
| } | |
| } | |
| } | |
| return ok; | |
| } | |
| static std::pair<int, int> test_handcrafted_file(const unsigned int seed) { | |
| int npass = 0; | |
| int ntest = 0; | |
| const std::vector<handcrafted_file_type> hfts = { | |
| HANDCRAFTED_HEADER_BAD_MAGIC, | |
| HANDCRAFTED_HEADER_BAD_VERSION_1, | |
| HANDCRAFTED_HEADER_BAD_VERSION_FUTURE, | |
| HANDCRAFTED_HEADER_BAD_N_KV, | |
| HANDCRAFTED_HEADER_BAD_N_TENSORS, | |
| HANDCRAFTED_HEADER_EMPTY, | |
| HANDCRAFTED_KV_BAD_KEY_SIZE, | |
| HANDCRAFTED_KV_BAD_TYPE, | |
| HANDCRAFTED_KV_DUPLICATE_KEY, | |
| HANDCRAFTED_KV_BAD_ALIGN, | |
| HANDCRAFTED_KV_SUCCESS, | |
| HANDCRAFTED_TENSORS_BAD_NAME_SIZE, | |
| HANDCRAFTED_TENSORS_BAD_N_DIMS, | |
| HANDCRAFTED_TENSORS_BAD_SHAPE, | |
| HANDCRAFTED_TENSORS_NE_TOO_BIG, | |
| HANDCRAFTED_TENSORS_BAD_TYPE, | |
| HANDCRAFTED_TENSORS_BAD_OFFSET, | |
| HANDCRAFTED_TENSORS_DUPLICATE_NAME, | |
| HANDCRAFTED_TENSORS_BAD_ALIGN, | |
| HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN, | |
| HANDCRAFTED_TENSORS_SUCCESS, | |
| HANDCRAFTED_TENSORS_CUSTOM_ALIGN, | |
| HANDCRAFTED_DATA_NOT_ENOUGH_DATA, | |
| HANDCRAFTED_DATA_BAD_ALIGN, | |
| HANDCRAFTED_DATA_INCONSISTENT_ALIGN, | |
| HANDCRAFTED_DATA_SUCCESS, | |
| HANDCRAFTED_DATA_CUSTOM_ALIGN, | |
| }; | |
| for (enum handcrafted_file_type hft : hfts) { | |
| printf("%s: handcrafted_file_type=%s\n", __func__, handcrafted_file_type_name(hft).c_str()); | |
| FILE * file = get_handcrafted_file(seed, hft); | |
| if (!file) { | |
| printf("%s: failed to create tmpfile(), needs elevated privileges on Windows"); | |
| printf("%s: skipping tests"); | |
| continue; | |
| } | |
| GGML_ASSERT(file); | |
| struct ggml_context * ctx = nullptr; | |
| struct gguf_init_params gguf_params = { | |
| /*no_alloc =*/ false, | |
| /*ctx =*/ hft >= offset_has_data ? &ctx : nullptr, | |
| }; | |
| struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params); | |
| if (expect_context_not_null(hft)) { | |
| printf("%s: - context_not_null: ", __func__); | |
| } else { | |
| printf("%s: - context_null: ", __func__); | |
| } | |
| if (bool(gguf_ctx) == expect_context_not_null(hft)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| if (hft >= offset_has_data && !expect_context_not_null(hft)) { | |
| printf("%s: - no_dangling_ggml_context_pointer: ", __func__); | |
| if (ctx) { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } else { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } | |
| ntest++; | |
| } | |
| const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN; | |
| if (expect_context_not_null(hft)) { | |
| printf("%s: - check_header: ", __func__); | |
| if (handcrafted_check_header(gguf_ctx, seed, hft >= offset_has_kv, hft >= offset_has_tensors, alignment_defined)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| } | |
| if (expect_context_not_null(hft) && hft >= offset_has_kv) { | |
| printf("%s: - check_kv: ", __func__); | |
| if (handcrafted_check_kv(gguf_ctx, seed, hft >= offset_has_tensors, alignment_defined)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| } | |
| if (expect_context_not_null(hft) && hft >= offset_has_tensors) { | |
| printf("%s: - check_tensors: ", __func__); | |
| if (handcrafted_check_tensors(gguf_ctx, seed)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| } | |
| if (expect_context_not_null(hft) && hft >= offset_has_data) { | |
| printf("%s: - check_tensor_data: ", __func__); | |
| if (handcrafted_check_tensor_data(gguf_ctx, seed, file)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| } | |
| fclose(file); | |
| if (gguf_ctx) { | |
| ggml_free(ctx); | |
| gguf_free(gguf_ctx); | |
| } | |
| printf("\n"); | |
| } | |
| return std::make_pair(npass, ntest); | |
| } | |
| struct random_gguf_context_result { | |
| struct gguf_context * gguf_ctx; | |
| struct ggml_context * ctx; | |
| ggml_backend_buffer_t buffer; | |
| }; | |
| static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t backend, const unsigned int seed) { | |
| std::mt19937 rng(seed); | |
| struct gguf_context * gguf_ctx = gguf_init_empty(); | |
| for (int i = 0; i < 256; ++i) { | |
| const std::string key = "my_key_" + std::to_string(rng() % 1024); | |
| const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT); | |
| switch (type) { | |
| case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break; | |
| case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break; | |
| case GGUF_TYPE_UINT16: gguf_set_val_u16 (gguf_ctx, key.c_str(), rng() % (1 << 15)); break; | |
| case GGUF_TYPE_INT16: gguf_set_val_i16 (gguf_ctx, key.c_str(), rng() % (1 << 15) - (1 << 14)); break; | |
| case GGUF_TYPE_UINT32: gguf_set_val_u32 (gguf_ctx, key.c_str(), rng()); break; | |
| case GGUF_TYPE_INT32: gguf_set_val_i32 (gguf_ctx, key.c_str(), rng() - (1 << 30)); break; | |
| case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (gguf_ctx, key.c_str(), rng() % 1024 - 512); break; | |
| case GGUF_TYPE_BOOL: gguf_set_val_bool(gguf_ctx, key.c_str(), rng() % 2 == 0); break; | |
| case GGUF_TYPE_STRING: gguf_set_val_str (gguf_ctx, key.c_str(), std::to_string(rng()).c_str()); break; | |
| case GGUF_TYPE_UINT64: gguf_set_val_u64 (gguf_ctx, key.c_str(), rng()); break; | |
| case GGUF_TYPE_INT64: gguf_set_val_i64 (gguf_ctx, key.c_str(), rng() - (1 << 30)); break; | |
| case GGUF_TYPE_FLOAT64: gguf_set_val_f32 (gguf_ctx, key.c_str(), rng() % 1024 - 512); break; | |
| case GGUF_TYPE_ARRAY: { | |
| const enum gguf_type type_arr = gguf_type(rng() % GGUF_TYPE_COUNT); | |
| const uint64_t ne = rng() % 1024; | |
| switch (type_arr) { | |
| case GGUF_TYPE_UINT8: | |
| case GGUF_TYPE_INT8: | |
| case GGUF_TYPE_UINT16: | |
| case GGUF_TYPE_INT16: | |
| case GGUF_TYPE_UINT32: | |
| case GGUF_TYPE_INT32: | |
| case GGUF_TYPE_FLOAT32: | |
| case GGUF_TYPE_BOOL: | |
| case GGUF_TYPE_UINT64: | |
| case GGUF_TYPE_INT64: | |
| case GGUF_TYPE_FLOAT64: { | |
| const size_t nbytes = ne*gguf_type_size(type_arr); | |
| std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t)); | |
| for (size_t j = 0; j < random_data.size(); ++j) { | |
| random_data[j] = rng(); | |
| if (type_arr == GGUF_TYPE_BOOL) { | |
| random_data[j] &= 0x01010101; // the sanitizer complains if booleans are not 0 or 1 | |
| } | |
| } | |
| gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne); | |
| } break; | |
| case GGUF_TYPE_STRING: { | |
| std::vector<std::string> data_cpp(ne); | |
| std::vector<const char *> data_c(ne); | |
| for (size_t j = 0; j < data_cpp.size(); ++j) { | |
| data_cpp[j] = std::to_string(rng()); | |
| data_c[j] = data_cpp[j].c_str(); | |
| } | |
| gguf_set_arr_str(gguf_ctx, key.c_str(), data_c.data(), ne); | |
| } break; | |
| case GGUF_TYPE_ARRAY: { | |
| break; // not supported | |
| } | |
| case GGUF_TYPE_COUNT: | |
| default: { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } break; | |
| case GGUF_TYPE_COUNT: | |
| default: { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| struct ggml_init_params ggml_params = { | |
| /*.mem_size =*/ 256*ggml_tensor_overhead(), | |
| /*.mem_buffer =*/ nullptr, | |
| /*.no_alloc =*/ true, | |
| }; | |
| struct ggml_context * ctx = ggml_init(ggml_params); | |
| for (int i = 0; i < 256; ++i) { | |
| const std::string name = "my_tensor_" + std::to_string(i); | |
| const enum ggml_type type = ggml_type(rng() % GGML_TYPE_COUNT); | |
| const size_t type_size = ggml_type_size(type); | |
| if (type_size == 0) { | |
| continue; | |
| } | |
| const int n_dims = 1 + rng() % GGML_MAX_DIMS; | |
| int64_t ne[GGML_MAX_DIMS]; | |
| ne[0] = (1 + rng() % 10) * ggml_blck_size(type); | |
| for (int j = 1; j < n_dims; ++j) { | |
| ne[j] = 1 + rng() % 10; | |
| } | |
| struct ggml_tensor * tensor = ggml_new_tensor(ctx, type, n_dims, ne); | |
| ggml_set_name(tensor, name.c_str()); | |
| } | |
| ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); | |
| for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { | |
| const size_t nbytes = ggml_nbytes(t); | |
| std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t)); | |
| for (size_t j = 0; j < random_data.size(); ++j) { | |
| random_data[j] = rng(); | |
| } | |
| ggml_backend_tensor_set(t, random_data.data(), 0, nbytes); | |
| gguf_add_tensor(gguf_ctx, t); | |
| } | |
| return {gguf_ctx, ctx, buf}; | |
| } | |
| static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other) { | |
| bool ok = true; | |
| const int n_kv = gguf_get_n_kv(ctx); | |
| for (int id = 0; id < n_kv; ++id) { | |
| const char * name = gguf_get_key(ctx, id); | |
| const int idx_other = gguf_find_key(other, name); | |
| if (idx_other < 0) { | |
| ok = false; | |
| continue; | |
| } | |
| const gguf_type type = gguf_get_kv_type(ctx, id); | |
| if (type != gguf_get_kv_type(other, idx_other)) { | |
| ok = false; | |
| continue; | |
| } | |
| if (type == GGUF_TYPE_ARRAY) { | |
| const size_t arr_n = gguf_get_arr_n(ctx, id); | |
| if (arr_n != gguf_get_arr_n(other, idx_other)) { | |
| ok = false; | |
| continue; | |
| } | |
| const gguf_type type_arr = gguf_get_arr_type(ctx, id); | |
| if (type_arr != gguf_get_arr_type(other, idx_other)) { | |
| ok = false; | |
| continue; | |
| } | |
| if (type_arr == GGUF_TYPE_BOOL) { | |
| const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id)); | |
| const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other)); | |
| for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) { | |
| if (bool(data[arr_i]) != bool(data_other[arr_i])) { | |
| ok = false; | |
| } | |
| } | |
| continue; | |
| } | |
| if (type_arr == GGUF_TYPE_STRING) { | |
| for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) { | |
| const std::string str = gguf_get_arr_str(ctx, id, arr_i); | |
| const std::string str_other = gguf_get_arr_str(other, idx_other, arr_i); | |
| if (str != str_other) { | |
| ok = false; | |
| } | |
| } | |
| continue; | |
| } | |
| const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id)); | |
| const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other)); | |
| if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) { | |
| ok = false; | |
| } | |
| continue; | |
| } | |
| if (type == GGUF_TYPE_STRING) { | |
| const std::string str = gguf_get_val_str(ctx, id); | |
| const std::string str_other = gguf_get_val_str(other, idx_other); | |
| if (str != str_other) { | |
| ok = false; | |
| } | |
| continue; | |
| } | |
| const char * data = reinterpret_cast<const char *>(gguf_get_val_data(ctx, id)); | |
| const char * data_other = reinterpret_cast<const char *>(gguf_get_val_data(other, idx_other)); | |
| if (!std::equal(data, data + gguf_type_size(type), data_other)) { | |
| ok = false; | |
| } | |
| } | |
| return ok; | |
| } | |
| static bool all_tensors_in_other(const gguf_context * ctx, const gguf_context * other) { | |
| bool ok = true; | |
| const int n_tensors = gguf_get_n_tensors(ctx); | |
| for (int id = 0; id < n_tensors; ++id) { | |
| const std::string name = gguf_get_tensor_name(ctx, id); | |
| const int idx_other = gguf_find_tensor(other, name.c_str()); | |
| if (id != idx_other) { | |
| ok = false; | |
| if (idx_other < 0) { | |
| continue; | |
| } | |
| } | |
| const ggml_type type = gguf_get_tensor_type(ctx, id); | |
| if (type != gguf_get_tensor_type(other, id)) { | |
| ok = false; | |
| } | |
| const size_t offset = gguf_get_tensor_offset(ctx, id); | |
| if (offset != gguf_get_tensor_offset(other, id)) { | |
| ok = false; | |
| } | |
| } | |
| return ok; | |
| } | |
| static bool same_tensor_data(const struct ggml_context * orig, const struct ggml_context * read) { | |
| bool ok = true; | |
| struct ggml_tensor * t_orig = ggml_get_first_tensor(orig); | |
| struct ggml_tensor * t_read = ggml_get_first_tensor(read); | |
| if (std::string(t_read->name) != "GGUF tensor data binary blob") { | |
| return false; | |
| } | |
| t_read = ggml_get_next_tensor(read, t_read); | |
| while (t_orig) { | |
| if (!t_read) { | |
| ok = false; | |
| break; | |
| } | |
| const size_t nbytes = ggml_nbytes(t_orig); | |
| if (ggml_nbytes(t_read) != nbytes) { | |
| ok = false; | |
| break; | |
| } | |
| std::vector<char> data_orig(nbytes); | |
| ggml_backend_tensor_get(t_orig, data_orig.data(), 0, nbytes); | |
| if (!std::equal(data_orig.data(), data_orig.data() + nbytes, reinterpret_cast<const char *>(t_read->data))) { | |
| ok = false; | |
| } | |
| t_orig = ggml_get_next_tensor(orig, t_orig); | |
| t_read = ggml_get_next_tensor(read, t_read); | |
| } | |
| if (t_read) { | |
| ok = false; | |
| } | |
| return ok; | |
| } | |
| static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) { | |
| ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); | |
| printf("%s: device=%s, backend=%s, only_meta=%s\n", | |
| __func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no"); | |
| int npass = 0; | |
| int ntest = 0; | |
| struct gguf_context * gguf_ctx_0; | |
| struct ggml_context * ctx_0; | |
| ggml_backend_buffer_t bbuf; | |
| { | |
| struct random_gguf_context_result result = get_random_gguf_context(backend, seed); | |
| gguf_ctx_0 = result.gguf_ctx; | |
| ctx_0 = result.ctx; | |
| bbuf = result.buffer; | |
| } | |
| FILE * file = tmpfile(); | |
| if (!file) { | |
| printf("%s: failed to create tmpfile(), needs elevated privileges on Windows"); | |
| printf("%s: skipping tests"); | |
| return std::make_pair(0, 0); | |
| } | |
| GGML_ASSERT(file); | |
| { | |
| std::vector<int8_t> buf; | |
| gguf_write_to_buf(gguf_ctx_0, buf, only_meta); | |
| GGML_ASSERT(fwrite(buf.data(), 1, buf.size(), file) == buf.size()); | |
| rewind(file); | |
| } | |
| struct ggml_context * ctx_1 = nullptr; | |
| struct gguf_init_params gguf_params = { | |
| /*no_alloc =*/ false, | |
| /*ctx =*/ only_meta ? nullptr : &ctx_1, | |
| }; | |
| struct gguf_context * gguf_ctx_1 = gguf_init_from_file_impl(file, gguf_params); | |
| printf("%s: same_version: ", __func__); | |
| if (gguf_get_version(gguf_ctx_0) == gguf_get_version(gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: same_n_kv: ", __func__); | |
| if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: same_n_tensors: ", __func__); | |
| if (gguf_get_n_tensors(gguf_ctx_0) == gguf_get_n_tensors(gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_orig_kv_in_read: ", __func__); | |
| if (all_kv_in_other(gguf_ctx_0, gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_read_kv_in_orig: ", __func__); | |
| if (all_kv_in_other(gguf_ctx_1, gguf_ctx_0)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_orig_tensors_in_read: ", __func__); | |
| if (all_tensors_in_other(gguf_ctx_0, gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_read_tensors_in_orig: ", __func__); | |
| if (all_tensors_in_other(gguf_ctx_1, gguf_ctx_0)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| if (!only_meta) { | |
| printf("%s: same_tensor_data: ", __func__); | |
| if (same_tensor_data(ctx_0, ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| } | |
| ggml_backend_buffer_free(bbuf); | |
| ggml_free(ctx_0); | |
| ggml_free(ctx_1); | |
| gguf_free(gguf_ctx_0); | |
| gguf_free(gguf_ctx_1); | |
| ggml_backend_free(backend); | |
| fclose(file); | |
| printf("\n"); | |
| return std::make_pair(npass, ntest); | |
| } | |
| static std::pair<int, int> test_gguf_set_kv(ggml_backend_dev_t dev, const unsigned int seed) { | |
| ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); | |
| printf("%s: device=%s, backend=%s\n", __func__, ggml_backend_dev_description(dev), ggml_backend_name(backend)); | |
| int npass = 0; | |
| int ntest = 0; | |
| struct gguf_context * gguf_ctx_0; | |
| struct ggml_context * ctx_0; | |
| ggml_backend_buffer_t bbuf_0; | |
| { | |
| struct random_gguf_context_result result = get_random_gguf_context(backend, seed); | |
| gguf_ctx_0 = result.gguf_ctx; | |
| ctx_0 = result.ctx; | |
| bbuf_0 = result.buffer; | |
| } | |
| struct gguf_context * gguf_ctx_1; | |
| struct ggml_context * ctx_1; | |
| ggml_backend_buffer_t bbuf_1; | |
| { | |
| struct random_gguf_context_result result = get_random_gguf_context(backend, seed + 1); | |
| gguf_ctx_1 = result.gguf_ctx; | |
| ctx_1 = result.ctx; | |
| bbuf_1 = result.buffer; | |
| } | |
| struct gguf_context * gguf_ctx_2 = gguf_init_empty(); | |
| gguf_set_kv(gguf_ctx_1, gguf_ctx_0); | |
| gguf_set_kv(gguf_ctx_2, gguf_ctx_0); | |
| printf("%s: same_n_kv: ", __func__); | |
| if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_2)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_kv_0_in_1: ", __func__); | |
| if (all_kv_in_other(gguf_ctx_0, gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_kv_0_in_2: ", __func__); | |
| if (all_kv_in_other(gguf_ctx_0, gguf_ctx_2)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| gguf_set_kv(gguf_ctx_0, gguf_ctx_1); | |
| printf("%s: same_n_kv_after_double_copy: ", __func__); | |
| if (gguf_get_n_kv(gguf_ctx_0) == gguf_get_n_kv(gguf_ctx_1)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| printf("%s: all_kv_1_in_0_after_double_copy: ", __func__); | |
| if (all_kv_in_other(gguf_ctx_1, gguf_ctx_0)) { | |
| printf("\033[1;32mOK\033[0m\n"); | |
| npass++; | |
| } else { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| } | |
| ntest++; | |
| ggml_backend_buffer_free(bbuf_0); | |
| ggml_backend_buffer_free(bbuf_1); | |
| ggml_free(ctx_0); | |
| ggml_free(ctx_1); | |
| gguf_free(gguf_ctx_0); | |
| gguf_free(gguf_ctx_1); | |
| gguf_free(gguf_ctx_2); | |
| ggml_backend_free(backend); | |
| printf("\n"); | |
| return std::make_pair(npass, ntest); | |
| } | |
| static void print_usage() { | |
| printf("usage: test-gguf [seed]\n"); | |
| printf(" if no seed is unspecified then a random seed is used\n"); | |
| } | |
| int main(int argc, char ** argv) { | |
| if (argc > 2) { | |
| print_usage(); | |
| return 1; | |
| } | |
| std::random_device rd; | |
| const unsigned int seed = argc < 2 ? rd() : std::stoi(argv[1]); | |
| // Initialize ggml backends early so the prints aren't interleaved with the test results: | |
| ggml_backend_dev_count(); | |
| fprintf(stderr, "\n"); | |
| int npass = 0; | |
| int ntest = 0; | |
| { | |
| std::pair<int, int> result = test_handcrafted_file(seed); | |
| npass += result.first; | |
| ntest += result.second; | |
| } | |
| for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { | |
| ggml_backend_dev_t dev = ggml_backend_dev_get(i); | |
| for (bool only_meta : {true, false}) { | |
| std::pair<int, int> result = test_roundtrip(dev, seed, only_meta); | |
| npass += result.first; | |
| ntest += result.second; | |
| } | |
| { | |
| std::pair<int, int> result = test_gguf_set_kv(dev, seed); | |
| npass += result.first; | |
| ntest += result.second; | |
| } | |
| } | |
| printf("%d/%d tests passed\n", npass, ntest); | |
| if (npass != ntest) { | |
| printf("\033[1;31mFAIL\033[0m\n"); | |
| return 1; | |
| } | |
| printf("\033[1;32mOK\033[0m\n"); | |
| return 0; | |
| } | |