Spaces:
Build error
Build error
| // Benchmark quantization specific functions on synthetic data | |
| struct quantize_perf_params { | |
| std::vector<std::string> include_types; | |
| std::vector<size_t> test_sizes; | |
| size_t alignment_offset = 0; | |
| bool op_quantize_row_q_reference = false; | |
| bool op_quantize_row_q = false; | |
| bool op_dequantize_row_q = false; | |
| bool op_quantize_row_q_dot = false; | |
| bool op_vec_dot_q = false; | |
| int64_t iterations = ITERATIONS; | |
| }; | |
| inline int64_t cpu_cycles() { | |
| // Rough way to detect new-ish CPUs | |
| unsigned int dummy; | |
| return __rdtscp(&dummy); | |
| return __rdtsc(); | |
| } | |
| // Generate synthetic data | |
| static void generate_data(float offset, size_t n, float * dst) { | |
| for (size_t i = 0; i < n; i++) { | |
| dst[i] = 0.1 + 2*cosf(i + offset); | |
| } | |
| } | |
| static float gigabytes_per_second(size_t bytes, int64_t usecs) { | |
| return bytes / (float) usecs * 1000000 / (1024*1024*1024); | |
| } | |
| static void * align_with_offset(void * ptr, int offset) { | |
| size_t dummy_size = MAX_ALIGNMENT * 4; | |
| return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; | |
| } | |
| static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<float(void)> & func) { | |
| int64_t min_time_us = INT64_MAX; | |
| int64_t total_time_us = 0; | |
| int64_t min_time_cycles = INT64_MAX; | |
| int64_t total_time_cycles = 0; | |
| for (int i = 0; i < WARMUP; i++) { | |
| func(); | |
| } | |
| for (int i = 0; i < iterations; i++) { | |
| const int64_t start_time = ggml_time_us(); | |
| const int64_t start_cycles = cpu_cycles(); | |
| func(); | |
| const int64_t end_cycles = cpu_cycles(); | |
| const int64_t end_time = ggml_time_us(); | |
| total_time_cycles += end_cycles - start_cycles; | |
| min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles); | |
| total_time_us += end_time - start_time; | |
| min_time_us = std::min(min_time_us, end_time - start_time); | |
| } | |
| printf(" min cycles/%d vals : %9.2f\n", QK, QK * min_time_cycles / (float) size); | |
| printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * iterations)); | |
| printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * iterations, total_time_us)); | |
| printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * iterations, total_time_us)); | |
| } | |
| static void usage(char * argv[]) { | |
| printf("Benchmark quantization specific functions on synthetic data\n"); | |
| printf("\n"); | |
| printf("usage: %s [options]\n", argv[0]); | |
| printf("\n"); | |
| printf("options: (default)\n"); | |
| printf(" -h, --help show this help message and exit\n"); | |
| printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE); | |
| printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE); | |
| printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE); | |
| printf(" --op OP set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n"); | |
| printf(" quantize_row_q_dot, vec_dot_q (all)\n"); | |
| printf(" --type TYPE set test type as"); | |
| for (int i = 0; i < GGML_TYPE_COUNT; i++) { | |
| ggml_type type = (ggml_type) i; | |
| const auto * qfns = ggml_get_type_traits(type); | |
| const auto * qfns_cpu = ggml_get_type_traits_cpu(type); | |
| if (ggml_type_name(type) != NULL) { | |
| if (qfns_cpu->from_float && qfns->to_float) { | |
| printf(" %s", ggml_type_name(type)); | |
| } | |
| } | |
| } | |
| printf(" (all)\n"); | |
| printf(" --alignment-offset OFFSET\n"); | |
| printf(" set alignment offset as OFFSET (0)\n"); | |
| printf(" -i NUM, --iterations NUM\n"); | |
| printf(" set test iteration number (%d)\n", ITERATIONS); | |
| } | |
| int main(int argc, char * argv[]) { | |
| quantize_perf_params params {}; | |
| // read command line | |
| bool invalid_param = false; | |
| std::string arg; | |
| for (int i = 1; i < argc; i++) { | |
| arg = argv[i]; | |
| if (arg == "--size") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| size_t size = std::stoi(argv[i]); | |
| if (size % 32 != 0) { | |
| fprintf(stderr, "error: size %zu not divisible by 32\n", size); | |
| invalid_param = true; | |
| break; | |
| } | |
| params.test_sizes.push_back(size); | |
| } else if (arg == "-3") { | |
| // quick select sizes that probably fit in CPU caches | |
| params.test_sizes.push_back(L1_SIZE); | |
| params.test_sizes.push_back(L2_SIZE); | |
| params.test_sizes.push_back(L3_SIZE); | |
| } else if (arg == "-4") { | |
| // quick select cache sizes + memory | |
| params.test_sizes.push_back(L1_SIZE); | |
| params.test_sizes.push_back(L2_SIZE); | |
| params.test_sizes.push_back(L3_SIZE); | |
| params.test_sizes.push_back(MEM_SIZE); | |
| } else if (arg == "--op") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| std::string op {argv[i]}; | |
| if (op == "quantize_row_q_reference") { | |
| params.op_quantize_row_q_reference = true; | |
| } else if (op == "quantize_row_q") { | |
| params.op_quantize_row_q = true; | |
| } else if (op == "dequantize_row_q") { | |
| params.op_dequantize_row_q = true; | |
| } else if (op == "quantize_row_q_dot") { | |
| params.op_quantize_row_q_dot = true; | |
| } else if (op == "vec_dot_q") { | |
| params.op_vec_dot_q = true; | |
| } else { | |
| invalid_param = true; | |
| break; | |
| } | |
| } else if (arg == "--type") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| params.include_types.push_back(argv[i]); | |
| } else if (arg == "--alignment-offset") { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| int alignment = std::stoi(argv[i]); | |
| if (alignment < 0 || alignment > MAX_ALIGNMENT) { | |
| fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT); | |
| invalid_param = true; | |
| break; | |
| } | |
| params.alignment_offset = alignment; | |
| } else if ((arg == "-i") || (arg == "--iterations")) { | |
| if (++i >= argc) { | |
| invalid_param = true; | |
| break; | |
| } | |
| int number = std::stoi(argv[i]); | |
| if (number < 0 || number > MAX_ITERATIONS) { | |
| fprintf(stderr, "error: iterations must be less than %d\n", MAX_ITERATIONS); | |
| invalid_param = true; | |
| break; | |
| } | |
| params.iterations = number; | |
| } else if ((arg == "-h") || (arg == "--help")) { | |
| usage(argv); | |
| return 1; | |
| } else { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| return 1; | |
| } | |
| } | |
| if (invalid_param) { | |
| fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
| return 1; | |
| } | |
| if (params.test_sizes.empty()) { | |
| params.test_sizes.push_back(L1_SIZE); | |
| } | |
| if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) { | |
| params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true; | |
| } | |
| std::sort(params.test_sizes.begin(), params.test_sizes.end()); | |
| size_t largest = params.test_sizes.back(); | |
| std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2); | |
| std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2); | |
| std::vector<uint8_t> test_q1_v (largest*4 + MAX_ALIGNMENT*2); | |
| std::vector<uint8_t> test_q2_v (largest*4 + MAX_ALIGNMENT*2); | |
| std::vector<uint8_t> test_out_v (largest*4 + MAX_ALIGNMENT*2); | |
| float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset); | |
| float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset); | |
| float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset); | |
| float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset); | |
| float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset); | |
| generate_data(0, largest, test_data1); | |
| generate_data(1, largest, test_data2); | |
| int64_t iterations = params.iterations; | |
| // Initialize GGML, ensures float conversion tables are initialized | |
| struct ggml_init_params ggml_params = { | |
| /* .mem_size = */ 1*1024, | |
| /* .mem_buffer = */ NULL, | |
| /* .no_alloc = */ true, | |
| }; | |
| struct ggml_context * ctx = ggml_init(ggml_params); | |
| for (int i = 0; i < GGML_TYPE_COUNT; i++) { | |
| ggml_type type = (ggml_type) i; | |
| const auto * qfns = ggml_get_type_traits(type); | |
| const auto * qfns_cpu = ggml_get_type_traits_cpu(type); | |
| if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { | |
| continue; | |
| } | |
| if (qfns_cpu->from_float && qfns->to_float) { | |
| printf("%s\n", ggml_type_name(type)); | |
| ggml_quantize_init(type); | |
| if (params.op_quantize_row_q_reference) { | |
| printf(" quantize_row_q_reference\n"); | |
| for (size_t size : params.test_sizes) { | |
| printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); | |
| auto quantize_fn = [&](void) -> float { | |
| qfns->from_float_ref(test_data1, test_q1, size); | |
| return test_q1[0]; | |
| }; | |
| size_t quantized_size = ggml_row_size(type, size); | |
| benchmark_function(size, quantized_size, iterations, quantize_fn); | |
| } | |
| printf("\n"); | |
| } | |
| if (params.op_quantize_row_q) { | |
| printf(" quantize_row_q\n"); | |
| for (size_t size : params.test_sizes) { | |
| printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); | |
| auto quantize_fn = [&](void) -> float { | |
| qfns_cpu->from_float(test_data1, test_q1, size); | |
| return test_q1[0]; | |
| }; | |
| size_t quantized_size = ggml_row_size(type, size); | |
| benchmark_function(size, quantized_size, iterations, quantize_fn); | |
| } | |
| printf("\n"); | |
| } | |
| if (params.op_dequantize_row_q) { | |
| printf(" dequantize_row_q\n"); | |
| qfns_cpu->from_float(test_data1, test_q1, largest); | |
| for (size_t size : params.test_sizes) { | |
| printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); | |
| auto quantize_fn = [&](void) -> float { | |
| qfns->to_float(test_q1, test_out, size); | |
| return test_out[0]; | |
| }; | |
| size_t quantized_size = ggml_row_size(type, size); | |
| benchmark_function(size, quantized_size, iterations, quantize_fn); | |
| } | |
| printf("\n"); | |
| } | |
| if (params.op_quantize_row_q_dot) { | |
| printf(" quantize_row_q_dot\n"); | |
| for (size_t size : params.test_sizes) { | |
| printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); | |
| auto quantize_fn = [&](void) -> float { | |
| const auto * vdot = ggml_get_type_traits_cpu(qfns_cpu->vec_dot_type); | |
| vdot->from_float(test_data1, test_q1, size); | |
| return test_q1[0]; | |
| }; | |
| size_t quantized_size = ggml_row_size(type, size); | |
| benchmark_function(size, quantized_size, iterations, quantize_fn); | |
| } | |
| printf("\n"); | |
| } | |
| if (params.op_vec_dot_q) { | |
| printf(" vec_dot_q\n"); | |
| qfns_cpu->from_float(test_data1, test_q1, largest); | |
| qfns_cpu->from_float(test_data2, test_q2, largest); | |
| for (size_t size : params.test_sizes) { | |
| printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); | |
| auto quantize_fn = [&](void) -> float { | |
| float result; | |
| qfns_cpu->vec_dot(size, &result, 0, test_q1, 0, test_q2, 0, 1); | |
| return result; | |
| }; | |
| size_t quantized_size = ggml_row_size(type, size); | |
| benchmark_function(size, quantized_size, iterations, quantize_fn); | |
| } | |
| printf("\n"); | |
| } | |
| } | |
| } | |
| ggml_free(ctx); | |
| return 0; | |
| } | |