Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app_inference.py +240 -0
- blora_utils.py +46 -0
- inf.py +121 -0
app_inference.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
from typing import Tuple, Optional
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from huggingface_hub import HfApi
|
| 11 |
+
|
| 12 |
+
from inf import InferencePipeline
|
| 13 |
+
|
| 14 |
+
SAMPLE_MODEL_IDS = [
|
| 15 |
+
'lora-library/B-LoRA-teddybear',
|
| 16 |
+
'lora-library/B-LoRA-bull',
|
| 17 |
+
'lora-library/B-LoRA-wolf_plushie',
|
| 18 |
+
'lora-library/B-LoRA-pen_sketch',
|
| 19 |
+
'lora-library/B-LoRA-cartoon_line',
|
| 20 |
+
'lora-library/B-LoRA-multi-dog2',
|
| 21 |
+
]
|
| 22 |
+
css = """
|
| 23 |
+
body {
|
| 24 |
+
font-size: 30px;
|
| 25 |
+
}
|
| 26 |
+
.gr-image {
|
| 27 |
+
width: 512px;
|
| 28 |
+
height: 512px;
|
| 29 |
+
object-fit: contain;
|
| 30 |
+
margin: auto;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
.lora-column {
|
| 34 |
+
display: flex;
|
| 35 |
+
flex-direction: column;
|
| 36 |
+
align-items: center; /* Center align content vertically in columns */
|
| 37 |
+
justify-content: center; /* Center content horizontally in columns */
|
| 38 |
+
}
|
| 39 |
+
.gr-row {
|
| 40 |
+
align-items: center;
|
| 41 |
+
justify-content: center;
|
| 42 |
+
margin-top: 5px;
|
| 43 |
+
}
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_choices(hf_token):
|
| 48 |
+
api = HfApi(token=hf_token)
|
| 49 |
+
choices = [
|
| 50 |
+
info.modelId for info in api.list_models(author='lora-library')
|
| 51 |
+
]
|
| 52 |
+
models_list = ['None'] + SAMPLE_MODEL_IDS + choices
|
| 53 |
+
return models_list
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_image_from_card(card, model_id) -> Optional[str]:
|
| 57 |
+
try:
|
| 58 |
+
card_path = f"https://huggingface.co/{model_id}/resolve/main/"
|
| 59 |
+
widget = card.data.get('widget')
|
| 60 |
+
if widget is not None or len(widget) > 0:
|
| 61 |
+
output = widget[0].get('output')
|
| 62 |
+
if output is not None:
|
| 63 |
+
url = output.get('url')
|
| 64 |
+
if url is not None:
|
| 65 |
+
return card_path + url
|
| 66 |
+
return None
|
| 67 |
+
except Exception:
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def demo_init():
|
| 72 |
+
try:
|
| 73 |
+
choices = get_choices(app.hf_token)
|
| 74 |
+
content_blora = random.choice(SAMPLE_MODEL_IDS)
|
| 75 |
+
style_blora = random.choice(SAMPLE_MODEL_IDS)
|
| 76 |
+
content_blora_prompt, content_blora_image = app.load_model_info(content_blora)
|
| 77 |
+
style_blora_prompt, style_blora_image = app.load_model_info(style_blora)
|
| 78 |
+
|
| 79 |
+
content_lora_model_id = gr.update(choices=choices, value=content_blora)
|
| 80 |
+
content_prompt = gr.update(value=content_blora_prompt)
|
| 81 |
+
content_image = gr.update(value=content_blora_image)
|
| 82 |
+
|
| 83 |
+
style_lora_model_id = gr.update(choices=choices, value=style_blora)
|
| 84 |
+
style_prompt = gr.update(value=style_blora_prompt)
|
| 85 |
+
style_image = gr.update(value=style_blora_image)
|
| 86 |
+
|
| 87 |
+
prompt = gr.update(
|
| 88 |
+
value=f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style')
|
| 89 |
+
|
| 90 |
+
return content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt, style_image, prompt
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
raise type(e)(f'failed to demo_init, due to: {e}')
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def toggle_column(is_checked):
|
| 97 |
+
try:
|
| 98 |
+
return 'None' if is_checked else random.choice(SAMPLE_MODEL_IDS)
|
| 99 |
+
except Exception as e:
|
| 100 |
+
raise type(e)(f'failed to toggle_column, due to: {e}')
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class InferenceUtil:
|
| 104 |
+
def __init__(self, hf_token: str | None):
|
| 105 |
+
self.hf_token = hf_token
|
| 106 |
+
|
| 107 |
+
def load_model_info(self, lora_model_id: str) -> Tuple[str, Optional[str]]:
|
| 108 |
+
try:
|
| 109 |
+
try:
|
| 110 |
+
card = InferencePipeline.get_model_card(lora_model_id,
|
| 111 |
+
self.hf_token)
|
| 112 |
+
except Exception:
|
| 113 |
+
return '', None
|
| 114 |
+
instance_prompt = getattr(card.data, 'instance_prompt', '')
|
| 115 |
+
image_url = get_image_from_card(card, lora_model_id)
|
| 116 |
+
return instance_prompt, image_url
|
| 117 |
+
except Exception as e:
|
| 118 |
+
raise type(e)(f'failed to load_model_info, due to: {e}')
|
| 119 |
+
|
| 120 |
+
def update_model_info(self, model_source: str):
|
| 121 |
+
try:
|
| 122 |
+
if model_source == 'None':
|
| 123 |
+
return '', None
|
| 124 |
+
else:
|
| 125 |
+
model_info = self.load_model_info(model_source)
|
| 126 |
+
new_prompt, new_image = model_info[0], model_info[1]
|
| 127 |
+
return new_prompt, new_image
|
| 128 |
+
except Exception as e:
|
| 129 |
+
raise type(e)(f'failed to update_model_info, due to: {e}')
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def create_inference_demo(pipe, #: InferencePipeline,
|
| 133 |
+
hf_token: str | None = None) -> gr.Blocks:
|
| 134 |
+
with gr.Blocks(css=css) as demo:
|
| 135 |
+
with gr.Row(elem_classes="gr-row"):
|
| 136 |
+
with gr.Column():
|
| 137 |
+
with gr.Group(elem_classes="lora-column"):
|
| 138 |
+
gr.Markdown('## Content B-LoRA')
|
| 139 |
+
content_checkbox = gr.Checkbox(label='Use Content Only', value=False)
|
| 140 |
+
content_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
|
| 141 |
+
content_prompt = gr.Text(label='Content instance prompt', interactive=False, max_lines=1)
|
| 142 |
+
content_image = gr.Image(label='Content Image', elem_classes="gr-image")
|
| 143 |
+
with gr.Column():
|
| 144 |
+
with gr.Group(elem_classes="lora-column"):
|
| 145 |
+
gr.Markdown('## Style B-LoRA')
|
| 146 |
+
style_checkbox = gr.Checkbox(label='Use Style Only', value=False)
|
| 147 |
+
style_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
|
| 148 |
+
style_prompt = gr.Text(label='Style instance prompt', interactive=False, max_lines=1)
|
| 149 |
+
style_image = gr.Image(label='Style Image', elem_classes="gr-image")
|
| 150 |
+
with gr.Row(elem_classes="gr-row"):
|
| 151 |
+
with gr.Column():
|
| 152 |
+
with gr.Group():
|
| 153 |
+
prompt = gr.Textbox(
|
| 154 |
+
label='Prompt',
|
| 155 |
+
max_lines=1,
|
| 156 |
+
placeholder='Example: "A [c] in [s] style"'
|
| 157 |
+
)
|
| 158 |
+
result = gr.Image(label='Result')
|
| 159 |
+
with gr.Accordion('Other Parameters', open=False, elem_classes="gr-accordion"):
|
| 160 |
+
content_alpha = gr.Slider(label='Content B-LoRA alpha',
|
| 161 |
+
minimum=0,
|
| 162 |
+
maximum=2,
|
| 163 |
+
step=0.05,
|
| 164 |
+
value=1)
|
| 165 |
+
style_alpha = gr.Slider(label='Style B-LoRA alpha',
|
| 166 |
+
minimum=0,
|
| 167 |
+
maximum=2,
|
| 168 |
+
step=0.05,
|
| 169 |
+
value=1)
|
| 170 |
+
seed = gr.Slider(label='Seed',
|
| 171 |
+
minimum=0,
|
| 172 |
+
maximum=100000,
|
| 173 |
+
step=1,
|
| 174 |
+
value=8888)
|
| 175 |
+
num_steps = gr.Slider(label='Number of Steps',
|
| 176 |
+
minimum=0,
|
| 177 |
+
maximum=100,
|
| 178 |
+
step=1,
|
| 179 |
+
value=50)
|
| 180 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
| 181 |
+
minimum=0,
|
| 182 |
+
maximum=50,
|
| 183 |
+
step=0.1,
|
| 184 |
+
value=7.5)
|
| 185 |
+
|
| 186 |
+
run_button = gr.Button('Generate')
|
| 187 |
+
demo.load(demo_init, inputs=[],
|
| 188 |
+
outputs=[content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt,
|
| 189 |
+
style_image, prompt], queue=False, show_progress="hidden")
|
| 190 |
+
content_lora_model_id.change(
|
| 191 |
+
fn=app.update_model_info,
|
| 192 |
+
inputs=content_lora_model_id,
|
| 193 |
+
outputs=[
|
| 194 |
+
content_prompt,
|
| 195 |
+
content_image,
|
| 196 |
+
])
|
| 197 |
+
style_lora_model_id.change(
|
| 198 |
+
fn=app.update_model_info,
|
| 199 |
+
inputs=style_lora_model_id,
|
| 200 |
+
outputs=[
|
| 201 |
+
style_prompt,
|
| 202 |
+
style_image,
|
| 203 |
+
])
|
| 204 |
+
style_prompt.change(
|
| 205 |
+
fn=lambda content_blora_prompt,
|
| 206 |
+
style_blora_prompt: f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style' if style_blora_prompt else content_blora_prompt,
|
| 207 |
+
inputs=[content_prompt, style_prompt],
|
| 208 |
+
outputs=prompt,
|
| 209 |
+
)
|
| 210 |
+
content_prompt.change(
|
| 211 |
+
fn=lambda content_blora_prompt,
|
| 212 |
+
style_blora_prompt: f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style' if content_blora_prompt else style_blora_prompt,
|
| 213 |
+
inputs=[content_prompt, style_prompt],
|
| 214 |
+
outputs=prompt,
|
| 215 |
+
)
|
| 216 |
+
content_checkbox.change(toggle_column, inputs=[content_checkbox],
|
| 217 |
+
outputs=[style_lora_model_id])
|
| 218 |
+
style_checkbox.change(toggle_column, inputs=[style_checkbox],
|
| 219 |
+
outputs=[content_lora_model_id])
|
| 220 |
+
inputs = [
|
| 221 |
+
content_lora_model_id,
|
| 222 |
+
style_lora_model_id,
|
| 223 |
+
prompt,
|
| 224 |
+
content_alpha,
|
| 225 |
+
style_alpha,
|
| 226 |
+
seed,
|
| 227 |
+
num_steps,
|
| 228 |
+
guidance_scale,
|
| 229 |
+
]
|
| 230 |
+
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
|
| 231 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
| 232 |
+
return demo
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if __name__ == '__main__':
|
| 236 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 237 |
+
pipe = InferencePipeline(hf_token)
|
| 238 |
+
app = InferenceUtil(hf_token)
|
| 239 |
+
demo = create_inference_demo(pipe, hf_token)
|
| 240 |
+
demo.queue(max_size=10).launch(share=False)
|
blora_utils.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
BLOCKS = {
|
| 4 |
+
'content': ['unet.up_blocks.0.attentions.0'],
|
| 5 |
+
'style': ['unet.up_blocks.0.attentions.1'],
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def is_belong_to_blocks(key, blocks):
|
| 10 |
+
try:
|
| 11 |
+
for g in blocks:
|
| 12 |
+
if g in key:
|
| 13 |
+
return True
|
| 14 |
+
return False
|
| 15 |
+
except Exception as e:
|
| 16 |
+
raise type(e)(f'failed to is_belong_to_block, due to: {e}')
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def filter_lora(state_dict, blocks_):
|
| 20 |
+
try:
|
| 21 |
+
return {k: v for k, v in state_dict.items() if is_belong_to_blocks(k, blocks_)}
|
| 22 |
+
except Exception as e:
|
| 23 |
+
raise type(e)(f'failed to filter_lora, due to: {e}')
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def scale_lora(state_dict, alpha):
|
| 27 |
+
try:
|
| 28 |
+
return {k: v * alpha for k, v in state_dict.items()}
|
| 29 |
+
except Exception as e:
|
| 30 |
+
raise type(e)(f'failed to scale_lora, due to: {e}')
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_target_modules(unet, blocks=None):
|
| 34 |
+
try:
|
| 35 |
+
if not blocks:
|
| 36 |
+
blocks = [('.').join(blk.split('.')[1:]) for blk in BLOCKS['content'] + BLOCKS['style']]
|
| 37 |
+
|
| 38 |
+
attns = [attn_processor_name.rsplit('.', 1)[0] for attn_processor_name, _ in unet.attn_processors.items() if
|
| 39 |
+
is_belong_to_blocks(attn_processor_name, blocks)]
|
| 40 |
+
|
| 41 |
+
target_modules = [f'{attn}.{mat}' for mat in ["to_k", "to_q", "to_v", "to_out.0"] for attn in attns]
|
| 42 |
+
return target_modules
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise type(e)(f'failed to get_target_modules, due to: {e}')
|
| 45 |
+
|
| 46 |
+
|
inf.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import gc
|
| 4 |
+
import pathlib
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import PIL.Image
|
| 8 |
+
import torch
|
| 9 |
+
from diffusers import StableDiffusionXLPipeline
|
| 10 |
+
from huggingface_hub import ModelCard
|
| 11 |
+
|
| 12 |
+
from blora_utils import BLOCKS, filter_lora, scale_lora
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class InferencePipeline:
|
| 16 |
+
def __init__(self, hf_token: str | None = None):
|
| 17 |
+
self.hf_token = hf_token
|
| 18 |
+
self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 19 |
+
self.device = torch.device(
|
| 20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 21 |
+
if self.device.type == 'cpu':
|
| 22 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 23 |
+
self.base_model_id, use_auth_token=self.hf_token, cache_dir='./cache')
|
| 24 |
+
else:
|
| 25 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 26 |
+
self.base_model_id,
|
| 27 |
+
torch_dtype=torch.float16,
|
| 28 |
+
use_auth_token=self.hf_token)
|
| 29 |
+
self.pipe = self.pipe.to(self.device)
|
| 30 |
+
self.content_lora_model_id = None
|
| 31 |
+
self.style_lora_model_id = None
|
| 32 |
+
|
| 33 |
+
def clear(self) -> None:
|
| 34 |
+
self.content_lora_model_id = None
|
| 35 |
+
self.style_lora_model_id = None
|
| 36 |
+
del self.pipe
|
| 37 |
+
self.pipe = None
|
| 38 |
+
torch.cuda.empty_cache()
|
| 39 |
+
gc.collect()
|
| 40 |
+
|
| 41 |
+
def load_b_lora_to_unet(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float,
|
| 42 |
+
style_alpha: float) -> None:
|
| 43 |
+
try:
|
| 44 |
+
# Get Content B-LoRA SD
|
| 45 |
+
if content_lora_model_id:
|
| 46 |
+
content_B_LoRA_sd, _ = self.pipe.lora_state_dict(content_lora_model_id, use_auth_token=self.hf_token)
|
| 47 |
+
content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content'])
|
| 48 |
+
content_B_LoRA = scale_lora(content_B_LoRA, content_alpha)
|
| 49 |
+
else:
|
| 50 |
+
content_B_LoRA = {}
|
| 51 |
+
|
| 52 |
+
# Get Style B-LoRA SD
|
| 53 |
+
if style_lora_model_id:
|
| 54 |
+
style_B_LoRA_sd, _ = self.pipe.lora_state_dict(style_lora_model_id, use_auth_token=self.hf_token)
|
| 55 |
+
style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style'])
|
| 56 |
+
style_B_LoRA = scale_lora(style_B_LoRA, style_alpha)
|
| 57 |
+
else:
|
| 58 |
+
style_B_LoRA = {}
|
| 59 |
+
|
| 60 |
+
# Merge B-LoRAs SD
|
| 61 |
+
res_lora = {**content_B_LoRA, **style_B_LoRA}
|
| 62 |
+
|
| 63 |
+
# Load
|
| 64 |
+
self.pipe.load_lora_into_unet(res_lora, None, self.pipe.unet)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
raise type(e)(f'failed to load_b_lora_to_unet, due to: {e}')
|
| 67 |
+
|
| 68 |
+
@staticmethod
|
| 69 |
+
def check_if_model_is_local(lora_model_id: str) -> bool:
|
| 70 |
+
return pathlib.Path(lora_model_id).exists()
|
| 71 |
+
|
| 72 |
+
@staticmethod
|
| 73 |
+
def get_model_card(model_id: str,
|
| 74 |
+
hf_token: str | None = None) -> ModelCard:
|
| 75 |
+
if InferencePipeline.check_if_model_is_local(model_id):
|
| 76 |
+
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
|
| 77 |
+
else:
|
| 78 |
+
card_path = model_id
|
| 79 |
+
return ModelCard.load(card_path, token=hf_token)
|
| 80 |
+
|
| 81 |
+
@staticmethod
|
| 82 |
+
def get_base_model_info(lora_model_id: str,
|
| 83 |
+
hf_token: str | None = None) -> str:
|
| 84 |
+
card = InferencePipeline.get_model_card(lora_model_id, hf_token)
|
| 85 |
+
return card.data.base_model
|
| 86 |
+
|
| 87 |
+
def load_pipe(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float,
|
| 88 |
+
style_alpha: float) -> None:
|
| 89 |
+
if content_lora_model_id == self.content_lora_model_id and style_lora_model_id == self.style_lora_model_id:
|
| 90 |
+
return
|
| 91 |
+
self.pipe.unload_lora_weights()
|
| 92 |
+
|
| 93 |
+
self.load_b_lora_to_unet(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
| 94 |
+
|
| 95 |
+
self.content_lora_model_id = content_lora_model_id
|
| 96 |
+
self.style_lora_model_id = style_lora_model_id
|
| 97 |
+
|
| 98 |
+
def run(
|
| 99 |
+
self,
|
| 100 |
+
content_lora_model_id: str,
|
| 101 |
+
style_lora_model_id: str,
|
| 102 |
+
prompt: str,
|
| 103 |
+
content_alpha: float,
|
| 104 |
+
style_alpha: float,
|
| 105 |
+
seed: int,
|
| 106 |
+
n_steps: int,
|
| 107 |
+
guidance_scale: float,
|
| 108 |
+
) -> PIL.Image.Image:
|
| 109 |
+
if not torch.cuda.is_available():
|
| 110 |
+
raise gr.Error('CUDA is not available.')
|
| 111 |
+
|
| 112 |
+
self.load_pipe(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
| 113 |
+
|
| 114 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 115 |
+
out = self.pipe(
|
| 116 |
+
prompt,
|
| 117 |
+
num_inference_steps=n_steps,
|
| 118 |
+
guidance_scale=guidance_scale,
|
| 119 |
+
generator=generator,
|
| 120 |
+
) # type: ignore
|
| 121 |
+
return out.images[0]
|