Update app.py
Browse files
app.py
CHANGED
|
@@ -5,17 +5,17 @@ import librosa
|
|
| 5 |
from transformers import pipeline, VitsModel, AutoTokenizer
|
| 6 |
import scipy # if needed for processing
|
| 7 |
|
| 8 |
-
#
|
| 9 |
# 1. ASR Pipeline (English)
|
| 10 |
-
#
|
| 11 |
asr = pipeline(
|
| 12 |
"automatic-speech-recognition",
|
| 13 |
model="facebook/wav2vec2-base-960h"
|
| 14 |
)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
# 2. Translation Models (3 languages)
|
| 18 |
-
#
|
| 19 |
translation_models = {
|
| 20 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 21 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
|
@@ -28,34 +28,32 @@ translation_tasks = {
|
|
| 28 |
"Japanese": "translation_en_to_ja"
|
| 29 |
}
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
# 3. TTS Model Configurations
|
| 33 |
-
#
|
| 34 |
-
#
|
|
|
|
| 35 |
tts_config = {
|
| 36 |
"Spanish": {
|
| 37 |
-
"model_id": "facebook/mms-tts-spa",
|
| 38 |
-
"architecture": "vits"
|
| 39 |
-
},
|
| 40 |
-
"Chinese": {
|
| 41 |
-
"model_id": "facebook/mms-tts-che",
|
| 42 |
"architecture": "vits"
|
| 43 |
},
|
|
|
|
| 44 |
"Japanese": {
|
| 45 |
-
"model_id": "facebook/mms-tts-jpn",
|
| 46 |
"architecture": "vits"
|
| 47 |
}
|
| 48 |
}
|
| 49 |
|
| 50 |
-
#
|
| 51 |
# 4. Caches
|
| 52 |
-
#
|
| 53 |
translator_cache = {}
|
| 54 |
tts_model_cache = {} # store (model, tokenizer, architecture)
|
| 55 |
|
| 56 |
-
#
|
| 57 |
# 5. Translator Helper
|
| 58 |
-
#
|
| 59 |
def get_translator(lang):
|
| 60 |
if lang in translator_cache:
|
| 61 |
return translator_cache[lang]
|
|
@@ -65,25 +63,27 @@ def get_translator(lang):
|
|
| 65 |
translator_cache[lang] = translator
|
| 66 |
return translator
|
| 67 |
|
| 68 |
-
#
|
| 69 |
# 6. TTS Loading Helper
|
| 70 |
-
#
|
| 71 |
def get_tts_model(lang):
|
| 72 |
"""
|
| 73 |
Loads (model, tokenizer, architecture) from Hugging Face once, then caches.
|
|
|
|
| 74 |
"""
|
| 75 |
if lang in tts_model_cache:
|
| 76 |
return tts_model_cache[lang]
|
| 77 |
|
| 78 |
config = tts_config.get(lang)
|
| 79 |
if config is None:
|
|
|
|
| 80 |
raise ValueError(f"No TTS config found for language: {lang}")
|
| 81 |
|
| 82 |
model_id = config["model_id"]
|
| 83 |
arch = config["architecture"]
|
| 84 |
|
| 85 |
try:
|
| 86 |
-
# Since arch == "vits" for
|
| 87 |
model = VitsModel.from_pretrained(model_id)
|
| 88 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 89 |
except Exception as e:
|
|
@@ -92,9 +92,9 @@ def get_tts_model(lang):
|
|
| 92 |
tts_model_cache[lang] = (model, tokenizer, arch)
|
| 93 |
return tts_model_cache[lang]
|
| 94 |
|
| 95 |
-
#
|
| 96 |
# 7. TTS Inference Helper
|
| 97 |
-
#
|
| 98 |
def run_tts_inference(lang, text):
|
| 99 |
"""
|
| 100 |
Generates waveform using the loaded TTS model and tokenizer.
|
|
@@ -119,14 +119,14 @@ def run_tts_inference(lang, text):
|
|
| 119 |
sample_rate = 16000
|
| 120 |
return (sample_rate, waveform)
|
| 121 |
|
| 122 |
-
#
|
| 123 |
# 8. Prediction Function
|
| 124 |
-
#
|
| 125 |
def predict(audio, text, target_language):
|
| 126 |
"""
|
| 127 |
1. Obtain English text (from text input or ASR).
|
| 128 |
2. Translate English -> target_language.
|
| 129 |
-
3. Run VITS-based TTS for that language.
|
| 130 |
"""
|
| 131 |
# Step 1: English text
|
| 132 |
if text.strip():
|
|
@@ -142,7 +142,7 @@ def predict(audio, text, target_language):
|
|
| 142 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
| 143 |
audio_data = np.mean(audio_data, axis=1)
|
| 144 |
|
| 145 |
-
# Resample to 16k
|
| 146 |
if sample_rate != 16000:
|
| 147 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
| 148 |
|
|
@@ -160,17 +160,20 @@ def predict(audio, text, target_language):
|
|
| 160 |
except Exception as e:
|
| 161 |
return english_text, f"Translation error: {e}", None
|
| 162 |
|
| 163 |
-
# Step 3: TTS
|
| 164 |
try:
|
|
|
|
|
|
|
|
|
|
| 165 |
sample_rate, waveform = run_tts_inference(target_language, translated_text)
|
| 166 |
except Exception as e:
|
| 167 |
return english_text, translated_text, f"TTS error: {e}"
|
| 168 |
|
| 169 |
return english_text, translated_text, (sample_rate, waveform)
|
| 170 |
|
| 171 |
-
#
|
| 172 |
# 9. Gradio Interface
|
| 173 |
-
#
|
| 174 |
iface = gr.Interface(
|
| 175 |
fn=predict,
|
| 176 |
inputs=[
|
|
@@ -181,19 +184,20 @@ iface = gr.Interface(
|
|
| 181 |
outputs=[
|
| 182 |
gr.Textbox(label="English Transcription"),
|
| 183 |
gr.Textbox(label="Translation (Target Language)"),
|
| 184 |
-
gr.Audio(label="Synthesized Speech
|
| 185 |
],
|
| 186 |
title="Multimodal Language Learning Aid (MMS TTS / VITS)",
|
| 187 |
description=(
|
| 188 |
"This app:\n"
|
| 189 |
"1. Transcribes English speech (via ASR) or accepts English text.\n"
|
| 190 |
"2. Translates to Spanish, Chinese, or Japanese (Helsinki-NLP).\n"
|
| 191 |
-
"3. Synthesizes speech with VITS-based MMS TTS models.\n\n"
|
| 192 |
-
"Note:
|
| 193 |
-
"Record/upload English audio or enter text, then select a target language."
|
| 194 |
),
|
| 195 |
allow_flagging="never"
|
| 196 |
)
|
| 197 |
|
| 198 |
if __name__ == "__main__":
|
| 199 |
-
|
|
|
|
|
|
|
|
|
| 5 |
from transformers import pipeline, VitsModel, AutoTokenizer
|
| 6 |
import scipy # if needed for processing
|
| 7 |
|
| 8 |
+
# ------------------------------------------------------
|
| 9 |
# 1. ASR Pipeline (English)
|
| 10 |
+
# ------------------------------------------------------
|
| 11 |
asr = pipeline(
|
| 12 |
"automatic-speech-recognition",
|
| 13 |
model="facebook/wav2vec2-base-960h"
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# ------------------------------------------------------
|
| 17 |
# 2. Translation Models (3 languages)
|
| 18 |
+
# ------------------------------------------------------
|
| 19 |
translation_models = {
|
| 20 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 21 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
|
|
|
| 28 |
"Japanese": "translation_en_to_ja"
|
| 29 |
}
|
| 30 |
|
| 31 |
+
# ------------------------------------------------------
|
| 32 |
+
# 3. TTS Model Configurations
|
| 33 |
+
# NOTE: MMS does not provide a Mandarin TTS model,
|
| 34 |
+
# so we skip TTS for Chinese.
|
| 35 |
+
# ------------------------------------------------------
|
| 36 |
tts_config = {
|
| 37 |
"Spanish": {
|
| 38 |
+
"model_id": "facebook/mms-tts-spa", # MMS Spanish
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"architecture": "vits"
|
| 40 |
},
|
| 41 |
+
"Chinese": None, # No MMS TTS for Chinese
|
| 42 |
"Japanese": {
|
| 43 |
+
"model_id": "facebook/mms-tts-jpn", # MMS Japanese
|
| 44 |
"architecture": "vits"
|
| 45 |
}
|
| 46 |
}
|
| 47 |
|
| 48 |
+
# ------------------------------------------------------
|
| 49 |
# 4. Caches
|
| 50 |
+
# ------------------------------------------------------
|
| 51 |
translator_cache = {}
|
| 52 |
tts_model_cache = {} # store (model, tokenizer, architecture)
|
| 53 |
|
| 54 |
+
# ------------------------------------------------------
|
| 55 |
# 5. Translator Helper
|
| 56 |
+
# ------------------------------------------------------
|
| 57 |
def get_translator(lang):
|
| 58 |
if lang in translator_cache:
|
| 59 |
return translator_cache[lang]
|
|
|
|
| 63 |
translator_cache[lang] = translator
|
| 64 |
return translator
|
| 65 |
|
| 66 |
+
# ------------------------------------------------------
|
| 67 |
# 6. TTS Loading Helper
|
| 68 |
+
# ------------------------------------------------------
|
| 69 |
def get_tts_model(lang):
|
| 70 |
"""
|
| 71 |
Loads (model, tokenizer, architecture) from Hugging Face once, then caches.
|
| 72 |
+
If no config is found (e.g. for Chinese), raises ValueError.
|
| 73 |
"""
|
| 74 |
if lang in tts_model_cache:
|
| 75 |
return tts_model_cache[lang]
|
| 76 |
|
| 77 |
config = tts_config.get(lang)
|
| 78 |
if config is None:
|
| 79 |
+
# No TTS model for this language
|
| 80 |
raise ValueError(f"No TTS config found for language: {lang}")
|
| 81 |
|
| 82 |
model_id = config["model_id"]
|
| 83 |
arch = config["architecture"]
|
| 84 |
|
| 85 |
try:
|
| 86 |
+
# Since arch == "vits" for these examples, load VitsModel + AutoTokenizer
|
| 87 |
model = VitsModel.from_pretrained(model_id)
|
| 88 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 89 |
except Exception as e:
|
|
|
|
| 92 |
tts_model_cache[lang] = (model, tokenizer, arch)
|
| 93 |
return tts_model_cache[lang]
|
| 94 |
|
| 95 |
+
# ------------------------------------------------------
|
| 96 |
# 7. TTS Inference Helper
|
| 97 |
+
# ------------------------------------------------------
|
| 98 |
def run_tts_inference(lang, text):
|
| 99 |
"""
|
| 100 |
Generates waveform using the loaded TTS model and tokenizer.
|
|
|
|
| 119 |
sample_rate = 16000
|
| 120 |
return (sample_rate, waveform)
|
| 121 |
|
| 122 |
+
# ------------------------------------------------------
|
| 123 |
# 8. Prediction Function
|
| 124 |
+
# ------------------------------------------------------
|
| 125 |
def predict(audio, text, target_language):
|
| 126 |
"""
|
| 127 |
1. Obtain English text (from text input or ASR).
|
| 128 |
2. Translate English -> target_language.
|
| 129 |
+
3. Run VITS-based TTS for that language (if available).
|
| 130 |
"""
|
| 131 |
# Step 1: English text
|
| 132 |
if text.strip():
|
|
|
|
| 142 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
| 143 |
audio_data = np.mean(audio_data, axis=1)
|
| 144 |
|
| 145 |
+
# Resample to 16k if needed
|
| 146 |
if sample_rate != 16000:
|
| 147 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
| 148 |
|
|
|
|
| 160 |
except Exception as e:
|
| 161 |
return english_text, f"Translation error: {e}", None
|
| 162 |
|
| 163 |
+
# Step 3: TTS (skip if no config for language)
|
| 164 |
try:
|
| 165 |
+
if tts_config[target_language] is None:
|
| 166 |
+
# No TTS model for Chinese or not supported
|
| 167 |
+
return english_text, translated_text, None
|
| 168 |
sample_rate, waveform = run_tts_inference(target_language, translated_text)
|
| 169 |
except Exception as e:
|
| 170 |
return english_text, translated_text, f"TTS error: {e}"
|
| 171 |
|
| 172 |
return english_text, translated_text, (sample_rate, waveform)
|
| 173 |
|
| 174 |
+
# ------------------------------------------------------
|
| 175 |
# 9. Gradio Interface
|
| 176 |
+
# ------------------------------------------------------
|
| 177 |
iface = gr.Interface(
|
| 178 |
fn=predict,
|
| 179 |
inputs=[
|
|
|
|
| 184 |
outputs=[
|
| 185 |
gr.Textbox(label="English Transcription"),
|
| 186 |
gr.Textbox(label="Translation (Target Language)"),
|
| 187 |
+
gr.Audio(label="Synthesized Speech (if available)")
|
| 188 |
],
|
| 189 |
title="Multimodal Language Learning Aid (MMS TTS / VITS)",
|
| 190 |
description=(
|
| 191 |
"This app:\n"
|
| 192 |
"1. Transcribes English speech (via ASR) or accepts English text.\n"
|
| 193 |
"2. Translates to Spanish, Chinese, or Japanese (Helsinki-NLP).\n"
|
| 194 |
+
"3. Synthesizes speech with VITS-based MMS TTS models for Spanish/Japanese.\n\n"
|
| 195 |
+
"Note: MMS does NOT currently provide a Mandarin TTS model, so TTS is skipped for Chinese."
|
|
|
|
| 196 |
),
|
| 197 |
allow_flagging="never"
|
| 198 |
)
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
+
# If running locally, uncomment:
|
| 202 |
+
# iface.launch()
|
| 203 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|