Spaces:
Running
on
Zero
Running
on
Zero
| from torch import nn, Tensor | |
| import torch.nn.functional as F | |
| from typing import Optional | |
| from ..utils import _init_weights, make_vgg_layers, vgg_urls | |
| from .vgg import _load_weights | |
| EPS = 1e-6 | |
| encoder_cfg = [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512] | |
| decoder_cfg = [512, 512, 512, 256, 128, 64] | |
| class CSRNet(nn.Module): | |
| def __init__( | |
| self, | |
| features: nn.Module, | |
| decoder: nn.Module, | |
| reduction: Optional[int] = None, | |
| ) -> None: | |
| super().__init__() | |
| self.features = features | |
| self.features.apply(_init_weights) | |
| self.decoder = decoder | |
| self.decoder.apply(_init_weights) | |
| self.encoder_reduction = 8 | |
| self.reduction = self.encoder_reduction if reduction is None else reduction | |
| self.channels = 64 | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.features(x) | |
| if self.encoder_reduction != self.reduction: | |
| x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear") | |
| x = self.decoder(x) | |
| return x | |
| def csrnet(reduction: int = 8) -> CSRNet: | |
| model = CSRNet( | |
| make_vgg_layers(encoder_cfg, in_channels=3, batch_norm=False, dilation=1), | |
| make_vgg_layers(decoder_cfg, in_channels=512, batch_norm=False, dilation=2), | |
| reduction=reduction | |
| ) | |
| return _load_weights(model, vgg_urls["vgg16"]) | |
| def csrnet_bn(reduction: int = 8) -> CSRNet: | |
| model = CSRNet( | |
| make_vgg_layers(encoder_cfg, in_channels=3, batch_norm=True, dilation=1), | |
| make_vgg_layers(decoder_cfg, in_channels=512, batch_norm=True, dilation=2), | |
| reduction=reduction | |
| ) | |
| return _load_weights(model, vgg_urls["vgg16"]) | |