Spaces:
Running
on
Zero
Running
on
Zero
| from torch import nn, Tensor | |
| import torch.nn.functional as F | |
| import timm | |
| from typing import Union, Optional | |
| from ..utils import BasicBlock, Bottleneck, make_resnet_layers | |
| from ..utils import _init_weights | |
| model_configs = { | |
| "resnet18.tv_in1k": { | |
| "decoder_channels": [512, 256, 128], | |
| }, | |
| "resnet34.tv_in1k": { | |
| "decoder_channels": [512, 256, 128], | |
| }, | |
| "resnet50.tv_in1k": { | |
| "decoder_channels": [512, 256, 256, 128], | |
| }, | |
| "resnet101.tv_in1k": { | |
| "decoder_channels": [512, 512, 256, 256, 128], | |
| }, | |
| "resnet152.tv_in1k": { | |
| "decoder_channels": [512, 512, 512, 256, 256, 128], | |
| }, | |
| } | |
| class ResNet(nn.Module): | |
| def __init__( | |
| self, | |
| decoder_block: Union[BasicBlock, Bottleneck], | |
| backbone: str = "resnet34.tv_in1k", | |
| reduction: Optional[int] = None, | |
| ) -> None: | |
| super().__init__() | |
| assert backbone in model_configs.keys(), f"Backbone should be in {model_configs.keys()}" | |
| config = model_configs[backbone] | |
| encoder = timm.create_model(backbone, pretrained=True, features_only=True, out_indices=(-1,)) | |
| encoder_reduction = encoder.feature_info.reduction()[-1] | |
| if reduction <= 16: | |
| if "resnet18" in backbone or "resnet34" in backbone: | |
| encoder.layer4[0].conv1.stride = (1, 1) | |
| encoder.layer4[0].downsample[0].stride = (1, 1) | |
| else: | |
| encoder.layer4[0].conv2.stride = (1, 1) | |
| encoder.layer4[0].downsample[0].stride = (1, 1) | |
| encoder_reduction = encoder_reduction // 2 | |
| self.encoder = encoder | |
| self.encoder_reduction = encoder_reduction | |
| encoder_out_channels = self.encoder.feature_info.channels()[-1] | |
| decoder_channels = config["decoder_channels"] | |
| self.decoder = make_resnet_layers( | |
| block=decoder_block, | |
| cfg=decoder_channels, | |
| in_channels=encoder_out_channels, | |
| dilation=1, | |
| expansion=1, | |
| ) | |
| self.decoder.apply(_init_weights) | |
| self.reduction = self.encoder_reduction if reduction is None else reduction | |
| self.channels = decoder_channels[-1] | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.encoder(x)[-1] | |
| if self.encoder_reduction != self.reduction: | |
| x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear") | |
| x = self.decoder(x) | |
| return x | |
| def resnet18(reduction: int = 32) -> ResNet: | |
| return ResNet(decoder_block=BasicBlock, backbone="resnet18.tv_in1k", reduction=reduction) | |
| def resnet34(reduction: int = 32) -> ResNet: | |
| return ResNet(decoder_block=BasicBlock, backbone="resnet34.tv_in1k", reduction=reduction) | |
| def resnet50(reduction: int = 32) -> ResNet: | |
| return ResNet(decoder_block=Bottleneck, backbone="resnet50.tv_in1k", reduction=reduction) | |
| def resnet101(reduction: int = 32) -> ResNet: | |
| return ResNet(decoder_block=Bottleneck, backbone="resnet101.tv_in1k", reduction=reduction) | |
| def resnet152(reduction: int = 32) -> ResNet: | |
| return ResNet(decoder_block=Bottleneck, backbone="resnet152.tv_in1k", reduction=reduction) | |