Spaces:
Running
Running
Upload externalmod.py
Browse files- externalmod.py +78 -24
externalmod.py
CHANGED
|
@@ -9,7 +9,7 @@ import re
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import TYPE_CHECKING, Callable
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
@@ -33,11 +33,15 @@ if TYPE_CHECKING:
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
@document()
|
| 37 |
def load(
|
| 38 |
name: str,
|
| 39 |
src: str | None = None,
|
| 40 |
-
hf_token: str | None = None,
|
| 41 |
alias: str | None = None,
|
| 42 |
**kwargs,
|
| 43 |
) -> Blocks:
|
|
@@ -48,7 +52,7 @@ def load(
|
|
| 48 |
Parameters:
|
| 49 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 50 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 51 |
-
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide
|
| 52 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 53 |
Returns:
|
| 54 |
a Gradio Blocks object for the given model
|
|
@@ -65,7 +69,7 @@ def load(
|
|
| 65 |
def load_blocks_from_repo(
|
| 66 |
name: str,
|
| 67 |
src: str | None = None,
|
| 68 |
-
hf_token: str | None = None,
|
| 69 |
alias: str | None = None,
|
| 70 |
**kwargs,
|
| 71 |
) -> Blocks:
|
|
@@ -89,7 +93,7 @@ def load_blocks_from_repo(
|
|
| 89 |
if src.lower() not in factory_methods:
|
| 90 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 91 |
|
| 92 |
-
if hf_token is not None:
|
| 93 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 94 |
warnings.warn(
|
| 95 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
@@ -100,12 +104,16 @@ def load_blocks_from_repo(
|
|
| 100 |
return blocks
|
| 101 |
|
| 102 |
|
| 103 |
-
def from_model(
|
|
|
|
|
|
|
| 104 |
model_url = f"https://huggingface.co/{model_name}"
|
| 105 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 106 |
print(f"Fetching model from: {model_url}")
|
| 107 |
|
| 108 |
-
headers =
|
|
|
|
|
|
|
| 109 |
response = httpx.request("GET", api_url, headers=headers)
|
| 110 |
if response.status_code != 200:
|
| 111 |
raise ModelNotFoundError(
|
|
@@ -115,7 +123,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 115 |
|
| 116 |
headers["X-Wait-For-Model"] = "true"
|
| 117 |
client = huggingface_hub.InferenceClient(
|
| 118 |
-
model=model_name, headers=headers, token=hf_token
|
| 119 |
)
|
| 120 |
|
| 121 |
# For tasks that are not yet supported by the InferenceClient
|
|
@@ -365,10 +373,14 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 365 |
else:
|
| 366 |
raise ValueError(f"Unsupported pipeline type: {p}")
|
| 367 |
|
| 368 |
-
def query_huggingface_inference_endpoints(*data):
|
| 369 |
if preprocess is not None:
|
| 370 |
data = preprocess(*data)
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
if postprocess is not None:
|
| 373 |
data = postprocess(data) # type: ignore
|
| 374 |
return data
|
|
@@ -380,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 380 |
"inputs": inputs,
|
| 381 |
"outputs": outputs,
|
| 382 |
"title": model_name,
|
| 383 |
-
|
| 384 |
}
|
| 385 |
|
| 386 |
kwargs = dict(interface_info, **kwargs)
|
|
@@ -391,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 391 |
def from_spaces(
|
| 392 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 393 |
) -> Blocks:
|
| 394 |
-
client = Client(
|
| 395 |
-
space_name,
|
| 396 |
-
hf_token=hf_token,
|
| 397 |
-
download_files=False,
|
| 398 |
-
_skip_components=False,
|
| 399 |
-
)
|
| 400 |
-
|
| 401 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 402 |
|
| 403 |
print(f"Fetching Space from: {space_url}")
|
| 404 |
|
| 405 |
headers = {}
|
| 406 |
-
if hf_token
|
| 407 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 408 |
|
| 409 |
iframe_url = (
|
|
@@ -440,8 +445,7 @@ def from_spaces(
|
|
| 440 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 441 |
"https://gradio.app/using_blocks_like_functions/"
|
| 442 |
)
|
| 443 |
-
|
| 444 |
-
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
| 445 |
|
| 446 |
|
| 447 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
@@ -486,7 +490,7 @@ def from_spaces_interface(
|
|
| 486 |
config = external_utils.streamline_spaces_interface(config)
|
| 487 |
api_url = f"{iframe_url}/api/predict/"
|
| 488 |
headers = {"Content-Type": "application/json"}
|
| 489 |
-
if hf_token
|
| 490 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 491 |
|
| 492 |
# The function should call the API with preprocessed data
|
|
@@ -526,6 +530,56 @@ def gr_Interface_load(
|
|
| 526 |
src: str | None = None,
|
| 527 |
hf_token: str | None = None,
|
| 528 |
alias: str | None = None,
|
| 529 |
-
**kwargs,
|
| 530 |
) -> Blocks:
|
| 531 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import TYPE_CHECKING, Callable, Literal
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
| 36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 37 |
+
server_timeout = 600
|
| 38 |
+
|
| 39 |
+
|
| 40 |
@document()
|
| 41 |
def load(
|
| 42 |
name: str,
|
| 43 |
src: str | None = None,
|
| 44 |
+
hf_token: str | Literal[False] | None = None,
|
| 45 |
alias: str | None = None,
|
| 46 |
**kwargs,
|
| 47 |
) -> Blocks:
|
|
|
|
| 52 |
Parameters:
|
| 53 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 54 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 55 |
+
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
|
| 56 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 57 |
Returns:
|
| 58 |
a Gradio Blocks object for the given model
|
|
|
|
| 69 |
def load_blocks_from_repo(
|
| 70 |
name: str,
|
| 71 |
src: str | None = None,
|
| 72 |
+
hf_token: str | Literal[False] | None = None,
|
| 73 |
alias: str | None = None,
|
| 74 |
**kwargs,
|
| 75 |
) -> Blocks:
|
|
|
|
| 93 |
if src.lower() not in factory_methods:
|
| 94 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 95 |
|
| 96 |
+
if hf_token is not None and hf_token is not False:
|
| 97 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 98 |
warnings.warn(
|
| 99 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
|
|
| 104 |
return blocks
|
| 105 |
|
| 106 |
|
| 107 |
+
def from_model(
|
| 108 |
+
model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
|
| 109 |
+
):
|
| 110 |
model_url = f"https://huggingface.co/{model_name}"
|
| 111 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 112 |
print(f"Fetching model from: {model_url}")
|
| 113 |
|
| 114 |
+
headers = (
|
| 115 |
+
{} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
|
| 116 |
+
)
|
| 117 |
response = httpx.request("GET", api_url, headers=headers)
|
| 118 |
if response.status_code != 200:
|
| 119 |
raise ModelNotFoundError(
|
|
|
|
| 123 |
|
| 124 |
headers["X-Wait-For-Model"] = "true"
|
| 125 |
client = huggingface_hub.InferenceClient(
|
| 126 |
+
model=model_name, headers=headers, token=hf_token, timeout=server_timeout,
|
| 127 |
)
|
| 128 |
|
| 129 |
# For tasks that are not yet supported by the InferenceClient
|
|
|
|
| 373 |
else:
|
| 374 |
raise ValueError(f"Unsupported pipeline type: {p}")
|
| 375 |
|
| 376 |
+
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 377 |
if preprocess is not None:
|
| 378 |
data = preprocess(*data)
|
| 379 |
+
try:
|
| 380 |
+
data = fn(*data, **kwargs) # type: ignore
|
| 381 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
| 382 |
+
if "429" in str(e):
|
| 383 |
+
raise TooManyRequestsError() from e
|
| 384 |
if postprocess is not None:
|
| 385 |
data = postprocess(data) # type: ignore
|
| 386 |
return data
|
|
|
|
| 392 |
"inputs": inputs,
|
| 393 |
"outputs": outputs,
|
| 394 |
"title": model_name,
|
| 395 |
+
#"examples": examples,
|
| 396 |
}
|
| 397 |
|
| 398 |
kwargs = dict(interface_info, **kwargs)
|
|
|
|
| 403 |
def from_spaces(
|
| 404 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 405 |
) -> Blocks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 407 |
|
| 408 |
print(f"Fetching Space from: {space_url}")
|
| 409 |
|
| 410 |
headers = {}
|
| 411 |
+
if hf_token not in [False, None]:
|
| 412 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 413 |
|
| 414 |
iframe_url = (
|
|
|
|
| 445 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 446 |
"https://gradio.app/using_blocks_like_functions/"
|
| 447 |
)
|
| 448 |
+
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
|
|
|
| 449 |
|
| 450 |
|
| 451 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
|
|
| 490 |
config = external_utils.streamline_spaces_interface(config)
|
| 491 |
api_url = f"{iframe_url}/api/predict/"
|
| 492 |
headers = {"Content-Type": "application/json"}
|
| 493 |
+
if hf_token not in [False, None]:
|
| 494 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 495 |
|
| 496 |
# The function should call the API with preprocessed data
|
|
|
|
| 530 |
src: str | None = None,
|
| 531 |
hf_token: str | None = None,
|
| 532 |
alias: str | None = None,
|
| 533 |
+
**kwargs, # ignore
|
| 534 |
) -> Blocks:
|
| 535 |
+
try:
|
| 536 |
+
return load_blocks_from_repo(name, src, hf_token, alias)
|
| 537 |
+
except Exception as e:
|
| 538 |
+
print(e)
|
| 539 |
+
return gradio.Interface(lambda: None, ['text'], ['image'])
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def list_uniq(l):
|
| 543 |
+
return sorted(set(l), key=l.index)
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def get_status(model_name: str):
|
| 547 |
+
from huggingface_hub import AsyncInferenceClient
|
| 548 |
+
client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
|
| 549 |
+
return client.get_model_status(model_name)
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
| 553 |
+
try:
|
| 554 |
+
status = get_status(model_name)
|
| 555 |
+
except Exception as e:
|
| 556 |
+
print(e)
|
| 557 |
+
print(f"Couldn't load {model_name}.")
|
| 558 |
+
return False
|
| 559 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
| 560 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
| 561 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
| 562 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 566 |
+
from huggingface_hub import HfApi
|
| 567 |
+
api = HfApi(token=HF_TOKEN)
|
| 568 |
+
default_tags = ["diffusers"]
|
| 569 |
+
if not sort: sort = "last_modified"
|
| 570 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 571 |
+
models = []
|
| 572 |
+
try:
|
| 573 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
| 574 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 575 |
+
except Exception as e:
|
| 576 |
+
print(f"Error: Failed to list models.")
|
| 577 |
+
print(e)
|
| 578 |
+
return models
|
| 579 |
+
for model in model_infos:
|
| 580 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
| 581 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 582 |
+
if not_tag and not_tag in model.tags or not loadable: continue
|
| 583 |
+
models.append(model.id)
|
| 584 |
+
if len(models) == limit: break
|
| 585 |
+
return models
|