Spaces:
Runtime error
Runtime error
Create convert_repo_to_safetensors_sd_gr.py
Browse files
convert_repo_to_safetensors_sd_gr.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 2 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 3 |
+
# Does not convert optimizer state or any other thing.
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import os.path as osp
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from safetensors.torch import load_file, save_file
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# =================#
|
| 15 |
+
# UNet Conversion #
|
| 16 |
+
# =================#
|
| 17 |
+
|
| 18 |
+
unet_conversion_map = [
|
| 19 |
+
# (stable-diffusion, HF Diffusers)
|
| 20 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
| 21 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
| 22 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
| 23 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
| 24 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
| 25 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
| 26 |
+
("out.0.weight", "conv_norm_out.weight"),
|
| 27 |
+
("out.0.bias", "conv_norm_out.bias"),
|
| 28 |
+
("out.2.weight", "conv_out.weight"),
|
| 29 |
+
("out.2.bias", "conv_out.bias"),
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
unet_conversion_map_resnet = [
|
| 33 |
+
# (stable-diffusion, HF Diffusers)
|
| 34 |
+
("in_layers.0", "norm1"),
|
| 35 |
+
("in_layers.2", "conv1"),
|
| 36 |
+
("out_layers.0", "norm2"),
|
| 37 |
+
("out_layers.3", "conv2"),
|
| 38 |
+
("emb_layers.1", "time_emb_proj"),
|
| 39 |
+
("skip_connection", "conv_shortcut"),
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
unet_conversion_map_layer = []
|
| 43 |
+
# hardcoded number of downblocks and resnets/attentions...
|
| 44 |
+
# would need smarter logic for other networks.
|
| 45 |
+
for i in range(4):
|
| 46 |
+
# loop over downblocks/upblocks
|
| 47 |
+
|
| 48 |
+
for j in range(2):
|
| 49 |
+
# loop over resnets/attentions for downblocks
|
| 50 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
| 51 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
| 52 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
| 53 |
+
|
| 54 |
+
if i < 3:
|
| 55 |
+
# no attention layers in down_blocks.3
|
| 56 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
| 57 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
| 58 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
| 59 |
+
|
| 60 |
+
for j in range(3):
|
| 61 |
+
# loop over resnets/attentions for upblocks
|
| 62 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
| 63 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
| 64 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
| 65 |
+
|
| 66 |
+
if i > 0:
|
| 67 |
+
# no attention layers in up_blocks.0
|
| 68 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
| 69 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
| 70 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
| 71 |
+
|
| 72 |
+
if i < 3:
|
| 73 |
+
# no downsample in down_blocks.3
|
| 74 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
| 75 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
| 76 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 77 |
+
|
| 78 |
+
# no upsample in up_blocks.3
|
| 79 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 80 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
| 81 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 82 |
+
|
| 83 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
| 84 |
+
sd_mid_atn_prefix = "middle_block.1."
|
| 85 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
| 86 |
+
|
| 87 |
+
for j in range(2):
|
| 88 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
| 89 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
| 90 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def convert_unet_state_dict(unet_state_dict):
|
| 94 |
+
# buyer beware: this is a *brittle* function,
|
| 95 |
+
# and correct output requires that all of these pieces interact in
|
| 96 |
+
# the exact order in which I have arranged them.
|
| 97 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
| 98 |
+
for sd_name, hf_name in unet_conversion_map:
|
| 99 |
+
mapping[hf_name] = sd_name
|
| 100 |
+
for k, v in mapping.items():
|
| 101 |
+
if "resnets" in k:
|
| 102 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
| 103 |
+
v = v.replace(hf_part, sd_part)
|
| 104 |
+
mapping[k] = v
|
| 105 |
+
for k, v in mapping.items():
|
| 106 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
| 107 |
+
v = v.replace(hf_part, sd_part)
|
| 108 |
+
mapping[k] = v
|
| 109 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
| 110 |
+
return new_state_dict
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# ================#
|
| 114 |
+
# VAE Conversion #
|
| 115 |
+
# ================#
|
| 116 |
+
|
| 117 |
+
vae_conversion_map = [
|
| 118 |
+
# (stable-diffusion, HF Diffusers)
|
| 119 |
+
("nin_shortcut", "conv_shortcut"),
|
| 120 |
+
("norm_out", "conv_norm_out"),
|
| 121 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
for i in range(4):
|
| 125 |
+
# down_blocks have two resnets
|
| 126 |
+
for j in range(2):
|
| 127 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
| 128 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
| 129 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
| 130 |
+
|
| 131 |
+
if i < 3:
|
| 132 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
| 133 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
| 134 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 135 |
+
|
| 136 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 137 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
| 138 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 139 |
+
|
| 140 |
+
# up_blocks have three resnets
|
| 141 |
+
# also, up blocks in hf are numbered in reverse from sd
|
| 142 |
+
for j in range(3):
|
| 143 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
| 144 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
| 145 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
| 146 |
+
|
| 147 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
| 148 |
+
for i in range(2):
|
| 149 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
| 150 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
| 151 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
vae_conversion_map_attn = [
|
| 155 |
+
# (stable-diffusion, HF Diffusers)
|
| 156 |
+
("norm.", "group_norm."),
|
| 157 |
+
("q.", "query."),
|
| 158 |
+
("k.", "key."),
|
| 159 |
+
("v.", "value."),
|
| 160 |
+
("proj_out.", "proj_attn."),
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
# This is probably not the most ideal solution, but it does work.
|
| 164 |
+
vae_extra_conversion_map = [
|
| 165 |
+
("to_q", "q"),
|
| 166 |
+
("to_k", "k"),
|
| 167 |
+
("to_v", "v"),
|
| 168 |
+
("to_out.0", "proj_out"),
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def reshape_weight_for_sd(w):
|
| 173 |
+
# convert HF linear weights to SD conv2d weights
|
| 174 |
+
if not w.ndim == 1:
|
| 175 |
+
return w.reshape(*w.shape, 1, 1)
|
| 176 |
+
else:
|
| 177 |
+
return w
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def convert_vae_state_dict(vae_state_dict):
|
| 181 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
| 182 |
+
for k, v in mapping.items():
|
| 183 |
+
for sd_part, hf_part in vae_conversion_map:
|
| 184 |
+
v = v.replace(hf_part, sd_part)
|
| 185 |
+
mapping[k] = v
|
| 186 |
+
for k, v in mapping.items():
|
| 187 |
+
if "attentions" in k:
|
| 188 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
| 189 |
+
v = v.replace(hf_part, sd_part)
|
| 190 |
+
mapping[k] = v
|
| 191 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 192 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 193 |
+
keys_to_rename = {}
|
| 194 |
+
for k, v in new_state_dict.items():
|
| 195 |
+
for weight_name in weights_to_convert:
|
| 196 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 197 |
+
print(f"Reshaping {k} for SD format")
|
| 198 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
| 199 |
+
for weight_name, real_weight_name in vae_extra_conversion_map:
|
| 200 |
+
if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
|
| 201 |
+
keys_to_rename[k] = k.replace(weight_name, real_weight_name)
|
| 202 |
+
for k, v in keys_to_rename.items():
|
| 203 |
+
if k in new_state_dict:
|
| 204 |
+
print(f"Renaming {k} to {v}")
|
| 205 |
+
new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
|
| 206 |
+
del new_state_dict[k]
|
| 207 |
+
return new_state_dict
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# =========================#
|
| 211 |
+
# Text Encoder Conversion #
|
| 212 |
+
# =========================#
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
textenc_conversion_lst = [
|
| 216 |
+
# (stable-diffusion, HF Diffusers)
|
| 217 |
+
("resblocks.", "text_model.encoder.layers."),
|
| 218 |
+
("ln_1", "layer_norm1"),
|
| 219 |
+
("ln_2", "layer_norm2"),
|
| 220 |
+
(".c_fc.", ".fc1."),
|
| 221 |
+
(".c_proj.", ".fc2."),
|
| 222 |
+
(".attn", ".self_attn"),
|
| 223 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
| 224 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
| 225 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
| 226 |
+
]
|
| 227 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
| 228 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
| 229 |
+
|
| 230 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
| 231 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
| 235 |
+
new_state_dict = {}
|
| 236 |
+
capture_qkv_weight = {}
|
| 237 |
+
capture_qkv_bias = {}
|
| 238 |
+
for k, v in text_enc_dict.items():
|
| 239 |
+
if (
|
| 240 |
+
k.endswith(".self_attn.q_proj.weight")
|
| 241 |
+
or k.endswith(".self_attn.k_proj.weight")
|
| 242 |
+
or k.endswith(".self_attn.v_proj.weight")
|
| 243 |
+
):
|
| 244 |
+
k_pre = k[: -len(".q_proj.weight")]
|
| 245 |
+
k_code = k[-len("q_proj.weight")]
|
| 246 |
+
if k_pre not in capture_qkv_weight:
|
| 247 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
| 248 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
| 249 |
+
continue
|
| 250 |
+
|
| 251 |
+
if (
|
| 252 |
+
k.endswith(".self_attn.q_proj.bias")
|
| 253 |
+
or k.endswith(".self_attn.k_proj.bias")
|
| 254 |
+
or k.endswith(".self_attn.v_proj.bias")
|
| 255 |
+
):
|
| 256 |
+
k_pre = k[: -len(".q_proj.bias")]
|
| 257 |
+
k_code = k[-len("q_proj.bias")]
|
| 258 |
+
if k_pre not in capture_qkv_bias:
|
| 259 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
| 260 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
| 264 |
+
new_state_dict[relabelled_key] = v
|
| 265 |
+
|
| 266 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
| 267 |
+
if None in tensors:
|
| 268 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 269 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 270 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
| 271 |
+
|
| 272 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
| 273 |
+
if None in tensors:
|
| 274 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
| 275 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
| 276 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
| 277 |
+
|
| 278 |
+
return new_state_dict
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
| 282 |
+
return text_enc_dict
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, progress=gr.Progress(track_tqdm=True)):
|
| 286 |
+
progress(0, desc="Start converting...")
|
| 287 |
+
# Path for safetensors
|
| 288 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
| 289 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
| 290 |
+
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
| 291 |
+
|
| 292 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
| 293 |
+
if osp.exists(unet_path):
|
| 294 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
| 295 |
+
else:
|
| 296 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
| 297 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
| 298 |
+
|
| 299 |
+
if osp.exists(vae_path):
|
| 300 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
| 301 |
+
else:
|
| 302 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
| 303 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
| 304 |
+
|
| 305 |
+
if osp.exists(text_enc_path):
|
| 306 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
| 307 |
+
else:
|
| 308 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
| 309 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
| 310 |
+
|
| 311 |
+
# Convert the UNet model
|
| 312 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 313 |
+
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
| 314 |
+
|
| 315 |
+
# Convert the VAE model
|
| 316 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 317 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 318 |
+
|
| 319 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
| 320 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
| 321 |
+
|
| 322 |
+
if is_v20_model:
|
| 323 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
| 324 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
| 325 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
| 326 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
| 327 |
+
else:
|
| 328 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
| 329 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
| 330 |
+
|
| 331 |
+
# Put together new checkpoint
|
| 332 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 333 |
+
if half:
|
| 334 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
| 335 |
+
|
| 336 |
+
save_file(state_dict, checkpoint_path)
|
| 337 |
+
|
| 338 |
+
progress(1, desc="Converted.")
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def download_repo(repo_id, dir_path, progress=gr.Progress(track_tqdm=True)):
|
| 342 |
+
from huggingface_hub import snapshot_download
|
| 343 |
+
try:
|
| 344 |
+
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
| 345 |
+
except Exception as e:
|
| 346 |
+
print(f"Error: Failed to download {repo_id}. ")
|
| 347 |
+
return
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def upload_safetensors_to_repo(filename, progress=gr.Progress(track_tqdm=True)):
|
| 351 |
+
from huggingface_hub import HfApi, hf_hub_url
|
| 352 |
+
import os
|
| 353 |
+
from pathlib import Path
|
| 354 |
+
output_filename = Path(filename).name
|
| 355 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 356 |
+
repo_id = os.environ.get("HF_OUTPUT_REPO")
|
| 357 |
+
api = HfApi()
|
| 358 |
+
try:
|
| 359 |
+
progress(0, desc="Start uploading...")
|
| 360 |
+
api.upload_file(path_or_fileobj=filename, path_in_repo=output_filename, repo_id=repo_id, token=hf_token)
|
| 361 |
+
progress(1, desc="Uploaded.")
|
| 362 |
+
url = hf_hub_url(repo_id=repo_id, filename=output_filename)
|
| 363 |
+
except Exception as e:
|
| 364 |
+
print(f"Error: Failed to upload to {repo_id}. ")
|
| 365 |
+
return None
|
| 366 |
+
return url
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def convert_repo_to_safetensors(repo_id, half = True, progress=gr.Progress(track_tqdm=True)):
|
| 370 |
+
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
| 371 |
+
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
| 372 |
+
download_repo(repo_id, download_dir)
|
| 373 |
+
convert_diffusers_to_safetensors(download_dir, output_filename, half)
|
| 374 |
+
return output_filename
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def convert_repo_to_safetensors_multi_sd(repo_id, files, is_upload, urls, half=True, progress=gr.Progress(track_tqdm=True)):
|
| 378 |
+
file = convert_repo_to_safetensors(repo_id, half)
|
| 379 |
+
if not urls: urls = []
|
| 380 |
+
url = ""
|
| 381 |
+
if is_upload:
|
| 382 |
+
url = upload_safetensors_to_repo(file)
|
| 383 |
+
if url: urls.append(url)
|
| 384 |
+
md = ""
|
| 385 |
+
for u in urls:
|
| 386 |
+
md += f"[Download {str(u).split('/')[-1]}]({str(u)})<br>"
|
| 387 |
+
if not files: files = []
|
| 388 |
+
files.append(file)
|
| 389 |
+
return gr.update(value=files), gr.update(value=urls, choices=urls), gr.update(value=md)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
if __name__ == "__main__":
|
| 393 |
+
parser = argparse.ArgumentParser()
|
| 394 |
+
|
| 395 |
+
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
| 396 |
+
parser.add_argument("--half", default=True, help="Save weights in half precision.")
|
| 397 |
+
|
| 398 |
+
args = parser.parse_args()
|
| 399 |
+
assert args.repo_id is not None, "Must provide a Repo ID!"
|
| 400 |
+
|
| 401 |
+
convert_repo_to_safetensors(args.repo_id, args.half)
|