testing with llama2
Browse files- config.yaml +3 -0
- requirements.txt +12 -0
- src/app.py +21 -0
- src/interface.py +32 -0
- src/pdfchatbot.py +193 -0
config.yaml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
modelEmbeddings: "sentence-transformers/all-MiniLM-L6-v2"
|
| 2 |
+
autoTokenizer: "meta-llama/Llama-2-7b-chat-hf"
|
| 3 |
+
autoModelForCausalLM: "meta-llama/Llama-2-7b-chat-hf"
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PyMuPDF==1.23.17
|
| 2 |
+
gradio==4.11.0
|
| 3 |
+
langchain==0.0.321
|
| 4 |
+
Pillow==10.1.0
|
| 5 |
+
torch==2.1.1
|
| 6 |
+
transformers==4.35.2
|
| 7 |
+
PyYAML==6.0.1
|
| 8 |
+
chromadb==0.4.15
|
| 9 |
+
pypdf==4.0.0
|
| 10 |
+
Jinja2==3.1.3
|
| 11 |
+
accelerate==0.26.1
|
| 12 |
+
sentence-transformers==2.2.2
|
src/app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from interface import create_demo
|
| 2 |
+
from pdfchatbot import PDFChatBot
|
| 3 |
+
|
| 4 |
+
# Create Gradio interface
|
| 5 |
+
demo, chat_history, show_img, txt, submit_button, uploaded_pdf = create_demo()
|
| 6 |
+
|
| 7 |
+
# Create PDFChatBot instance
|
| 8 |
+
pdf_chatbot = PDFChatBot()
|
| 9 |
+
|
| 10 |
+
# Set up event handlers
|
| 11 |
+
with demo:
|
| 12 |
+
# Event handler for uploading a PDF
|
| 13 |
+
uploaded_pdf.upload(pdf_chatbot.render_file, inputs=[uploaded_pdf], outputs=[show_img])
|
| 14 |
+
|
| 15 |
+
# Event handler for submitting text and generating response
|
| 16 |
+
submit_button.click(pdf_chatbot.add_text, inputs=[chat_history, txt], outputs=[chat_history], queue=False).\
|
| 17 |
+
success(pdf_chatbot.generate_response, inputs=[chat_history, txt, uploaded_pdf], outputs=[chat_history, txt]).\
|
| 18 |
+
success(pdf_chatbot.render_file, inputs=[uploaded_pdf], outputs=[show_img])
|
| 19 |
+
|
| 20 |
+
if __name__ == "__main__":
|
| 21 |
+
demo.launch()
|
src/interface.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
# Gradio application setup
|
| 4 |
+
def create_demo():
|
| 5 |
+
with gr.Blocks(title= "RAG Chatbot Q&A",
|
| 6 |
+
theme = "Soft"
|
| 7 |
+
) as demo:
|
| 8 |
+
with gr.Column():
|
| 9 |
+
with gr.Row():
|
| 10 |
+
chat_history = gr.Chatbot(value=[], elem_id='chatbot', height=680)
|
| 11 |
+
show_img = gr.Image(label='Overview', height=680)
|
| 12 |
+
|
| 13 |
+
with gr.Row():
|
| 14 |
+
with gr.Column(scale=0.60):
|
| 15 |
+
text_input = gr.Textbox(
|
| 16 |
+
show_label=False,
|
| 17 |
+
placeholder="Type here to ask your PDF",
|
| 18 |
+
container=False)
|
| 19 |
+
|
| 20 |
+
with gr.Column(scale=0.20):
|
| 21 |
+
submit_button = gr.Button('Send')
|
| 22 |
+
|
| 23 |
+
with gr.Column(scale=0.20):
|
| 24 |
+
uploaded_pdf = gr.UploadButton("📁 Upload PDF", file_types=[".pdf"])
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
return demo, chat_history, show_img, text_input, submit_button, uploaded_pdf
|
| 28 |
+
|
| 29 |
+
if __name__ == '__main__':
|
| 30 |
+
demo, chatbot, show_img, text_input, submit_button, uploaded_pdf = create_demo()
|
| 31 |
+
demo.queue()
|
| 32 |
+
demo.launch()
|
src/pdfchatbot.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yaml
|
| 2 |
+
import fitz
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.vectorstores import Chroma
|
| 8 |
+
from langchain.llms import HuggingFacePipeline
|
| 9 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
+
from langchain.document_loaders import PyPDFLoader
|
| 11 |
+
from langchain.prompts import PromptTemplate
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 13 |
+
|
| 14 |
+
class PDFChatBot:
|
| 15 |
+
def __init__(self, config_path="../config.yaml"):
|
| 16 |
+
"""
|
| 17 |
+
Initialize the PDFChatBot instance.
|
| 18 |
+
|
| 19 |
+
Parameters:
|
| 20 |
+
config_path (str): Path to the configuration file (default is "../config.yaml").
|
| 21 |
+
"""
|
| 22 |
+
self.processed = False
|
| 23 |
+
self.page = 0
|
| 24 |
+
self.chat_history = []
|
| 25 |
+
self.config = self.load_config(config_path)
|
| 26 |
+
# Initialize other attributes to None
|
| 27 |
+
self.prompt = None
|
| 28 |
+
self.documents = None
|
| 29 |
+
self.embeddings = None
|
| 30 |
+
self.vectordb = None
|
| 31 |
+
self.tokenizer = None
|
| 32 |
+
self.model = None
|
| 33 |
+
self.pipeline = None
|
| 34 |
+
self.chain = None
|
| 35 |
+
|
| 36 |
+
def load_config(self, file_path):
|
| 37 |
+
"""
|
| 38 |
+
Load configuration from a YAML file.
|
| 39 |
+
|
| 40 |
+
Parameters:
|
| 41 |
+
file_path (str): Path to the YAML configuration file.
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
dict: Configuration as a dictionary.
|
| 45 |
+
"""
|
| 46 |
+
with open(file_path, 'r') as stream:
|
| 47 |
+
try:
|
| 48 |
+
config = yaml.safe_load(stream)
|
| 49 |
+
return config
|
| 50 |
+
except yaml.YAMLError as exc:
|
| 51 |
+
print(f"Error loading configuration: {exc}")
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
def add_text(self, history, text):
|
| 55 |
+
"""
|
| 56 |
+
Add user-entered text to the chat history.
|
| 57 |
+
|
| 58 |
+
Parameters:
|
| 59 |
+
history (list): List of chat history tuples.
|
| 60 |
+
text (str): User-entered text.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
list: Updated chat history.
|
| 64 |
+
"""
|
| 65 |
+
if not text:
|
| 66 |
+
raise gr.Error('Enter text')
|
| 67 |
+
history.append((text, ''))
|
| 68 |
+
return history
|
| 69 |
+
|
| 70 |
+
def create_prompt_template(self):
|
| 71 |
+
"""
|
| 72 |
+
Create a prompt template for the chatbot.
|
| 73 |
+
"""
|
| 74 |
+
template = (
|
| 75 |
+
f"The assistant should provide detailed explanations."
|
| 76 |
+
"Combine the chat history and follow up question into "
|
| 77 |
+
"Follow up question: What is this"
|
| 78 |
+
)
|
| 79 |
+
self.prompt = PromptTemplate.from_template(template)
|
| 80 |
+
|
| 81 |
+
def load_embeddings(self):
|
| 82 |
+
"""
|
| 83 |
+
Load embeddings from Hugging Face and set in the config file.
|
| 84 |
+
"""
|
| 85 |
+
self.embeddings = HuggingFaceEmbeddings(model_name=self.config.get("modelEmbeddings"))
|
| 86 |
+
|
| 87 |
+
def load_vectordb(self):
|
| 88 |
+
"""
|
| 89 |
+
Load the vector database from the documents and embeddings.
|
| 90 |
+
"""
|
| 91 |
+
self.vectordb = Chroma.from_documents(self.documents, self.embeddings)
|
| 92 |
+
|
| 93 |
+
def load_tokenizer(self):
|
| 94 |
+
"""
|
| 95 |
+
Load the tokenizer from Hugging Face and set in the config file.
|
| 96 |
+
"""
|
| 97 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.config.get("autoTokenizer"))
|
| 98 |
+
|
| 99 |
+
def load_model(self):
|
| 100 |
+
"""
|
| 101 |
+
Load the causal language model from Hugging Face and set in the config file.
|
| 102 |
+
"""
|
| 103 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 104 |
+
self.config.get("autoModelForCausalLM"),
|
| 105 |
+
device_map='auto',
|
| 106 |
+
torch_dtype=torch.float32,
|
| 107 |
+
token=True,
|
| 108 |
+
load_in_8bit=False
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def create_pipeline(self):
|
| 112 |
+
"""
|
| 113 |
+
Create a pipeline for text generation using the loaded model and tokenizer.
|
| 114 |
+
"""
|
| 115 |
+
pipe = pipeline(
|
| 116 |
+
model=self.model,
|
| 117 |
+
task='text-generation',
|
| 118 |
+
tokenizer=self.tokenizer,
|
| 119 |
+
max_new_tokens=200
|
| 120 |
+
)
|
| 121 |
+
self.pipeline = HuggingFacePipeline(pipeline=pipe)
|
| 122 |
+
|
| 123 |
+
def create_chain(self):
|
| 124 |
+
"""
|
| 125 |
+
Create a Conversational Retrieval Chain
|
| 126 |
+
"""
|
| 127 |
+
self.chain = ConversationalRetrievalChain.from_llm(
|
| 128 |
+
self.pipeline,
|
| 129 |
+
chain_type="stuff",
|
| 130 |
+
retriever=self.vectordb.as_retriever(search_kwargs={"k": 1}),
|
| 131 |
+
condense_question_prompt=self.prompt,
|
| 132 |
+
return_source_documents=True
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def process_file(self, file):
|
| 136 |
+
"""
|
| 137 |
+
Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM.
|
| 138 |
+
|
| 139 |
+
Parameters:
|
| 140 |
+
file (FileStorage): The uploaded PDF file.
|
| 141 |
+
"""
|
| 142 |
+
self.create_prompt_template()
|
| 143 |
+
self.documents = PyPDFLoader(file.name).load()
|
| 144 |
+
self.load_embeddings()
|
| 145 |
+
self.load_vectordb()
|
| 146 |
+
self.load_tokenizer()
|
| 147 |
+
self.load_model()
|
| 148 |
+
self.create_pipeline()
|
| 149 |
+
self.create_chain()
|
| 150 |
+
|
| 151 |
+
def generate_response(self, history, query, file):
|
| 152 |
+
"""
|
| 153 |
+
Generate a response based on user query and chat history.
|
| 154 |
+
|
| 155 |
+
Parameters:
|
| 156 |
+
history (list): List of chat history tuples.
|
| 157 |
+
query (str): User's query.
|
| 158 |
+
file (FileStorage): The uploaded PDF file.
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
tuple: Updated chat history and a space.
|
| 162 |
+
"""
|
| 163 |
+
if not query:
|
| 164 |
+
raise gr.Error(message='Submit a question')
|
| 165 |
+
if not file:
|
| 166 |
+
raise gr.Error(message='Upload a PDF')
|
| 167 |
+
if not self.processed:
|
| 168 |
+
self.process_file(file)
|
| 169 |
+
self.processed = True
|
| 170 |
+
|
| 171 |
+
result = self.chain({"question": query, 'chat_history': self.chat_history}, return_only_outputs=True)
|
| 172 |
+
self.chat_history.append((query, result["answer"]))
|
| 173 |
+
self.page = list(result['source_documents'][0])[1][1]['page']
|
| 174 |
+
|
| 175 |
+
for char in result['answer']:
|
| 176 |
+
history[-1][-1] += char
|
| 177 |
+
return history, " "
|
| 178 |
+
|
| 179 |
+
def render_file(self, file):
|
| 180 |
+
"""
|
| 181 |
+
Renders a specific page of a PDF file as an image.
|
| 182 |
+
|
| 183 |
+
Parameters:
|
| 184 |
+
file (FileStorage): The PDF file.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
PIL.Image.Image: The rendered page as an image.
|
| 188 |
+
"""
|
| 189 |
+
doc = fitz.open(file.name)
|
| 190 |
+
page = doc[self.page]
|
| 191 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
|
| 192 |
+
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
|
| 193 |
+
return image
|