Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| import numpy as np | |
| from aura_sr import AuraSR | |
| import torch | |
| # Force CPU usage | |
| torch.set_default_tensor_type(torch.FloatTensor) | |
| # Override torch.load to always use CPU | |
| original_load = torch.load | |
| torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) | |
| # Initialize the AuraSR model | |
| aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") | |
| # Restore original torch.load | |
| torch.load = original_load | |
| def process_image(input_image): | |
| if input_image is None: | |
| raise gr.Error("Please provide an image to upscale.") | |
| # Convert to PIL Image for resizing | |
| pil_image = Image.fromarray(input_image) | |
| # Upscale the image using AuraSR | |
| upscaled_image = process_image_on_gpu(pil_image) | |
| # Convert result to numpy array if it's not already | |
| result_array = np.array(upscaled_image) | |
| return [input_image, result_array] | |
| def process_image_on_gpu(pil_image): | |
| return aura_sr.upscale_4x(pil_image) | |
| title = """<h1 align="center">AuraSR</h1> | |
| <p><center>Upscales your images to x4</center></p> | |
| <p><center> | |
| <a href="https://huggingface.co/fal/AuraSR-v2" target="_blank">[AuraSR-v2]</a> | |
| <a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a> | |
| <a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[v1 Model Page]</a> | |
| </center></p> | |
| <br/> | |
| <p>This is an open reproduction of the GigaGAN Upscaler from fal.ai</p> | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| process_btn = gr.Button(value="Upscale Image", variant = "primary") | |
| with gr.Column(scale=1): | |
| output_slider = ImageSlider(label="Before / After", type="numpy") | |
| process_btn.click( | |
| fn=process_image, | |
| inputs=[input_image], | |
| outputs=output_slider | |
| ) | |
| # Add examples | |
| gr.Examples( | |
| examples=[ | |
| "image1.png", | |
| "image3.png" | |
| ], | |
| inputs=input_image, | |
| outputs=output_slider, | |
| fn=process_image, | |
| cache_examples=True | |
| ) | |
| demo.launch(debug=True) |