# Assignment 9: PCA for Dimensionality Reduction # Apply PCA to reduce dimensions of a dataset from sklearn.decomposition import PCA import numpy as np # Synthetic dataset X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # Apply PCA pca = PCA(n_components=2) X_reduced = pca.fit_transform(X) # Error: Accessing undefined attribute print(pca.explained_variance) # Should be explained_variance_ratio_ print(X_reduced)