# Assignment 4: Linear Regression on Synthetic Data # Build a linear regression model to predict house prices import numpy as np from sklearn.linear_model import LinearRegression # Synthetic dataset X = np.array([[1, 2], [2, 4], [3, 6], [4, 8]]) # Features: size, rooms y = np.array([100, 200, 300, 400]) # Prices # Train model model = LinearRegression() model.fit(X, y) # Predict on new data new_data = np.array([5, 10]) # Error: Shape mismatch, should be [[5, 10]] print(f"Predicted price: {model.predict(new_data)}")