{ "cells": [ { "cell_type": "markdown", "id": "4ecafd98", "metadata": {}, "source": [ "# Assignment 3: Feature Engineering - Encoding Categorical Data\n", "Create a function to encode categorical variables in a dataset using one-hot encoding.\n", "Dataset contains student info with grades (A, B, C) and gender (M, F)." ] }, { "cell_type": "code", "execution_count": null, "id": "44ac96ce", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", " \n", " # Synthetic dataset\n", "data = {\n", " 'student': ['Alice', 'Bob', 'Charlie'],\n", " 'grade': ['A', 'B', 'C'],\n", " 'gender': ['F', 'M', 'F']\n", " }\n", "df = pd.DataFrame(data)\n", "\n", " # One-hot encoding\\n\",\n", "df_encoded = pd.get_dummies(df, columns=['grade', 'gender']) \n", "print(df_encoded)\n", " \n", " # Error: Trying to access non-existent column\\n\",\n", "print(df_encoded['grade_D'])" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 5 }