Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from sqlalchemy import text | |
| from smolagents import tool, CodeAgent, HfApiModel | |
| import spaces | |
| import pandas as pd | |
| from database import engine, receipts | |
| # Fetch all data from the 'receipts' table | |
| def get_receipts_table(): | |
| """ | |
| Fetch all rows from the receipts table and return as a Pandas DataFrame. | |
| """ | |
| try: | |
| with engine.connect() as con: | |
| result = con.execute(text("SELECT * FROM receipts")) | |
| rows = result.fetchall() | |
| if not rows: | |
| return pd.DataFrame(columns=["receipt_id", "customer_name", "price", "tip"]) | |
| return pd.DataFrame(rows, columns=["receipt_id", "customer_name", "price", "tip"]) | |
| except Exception as e: | |
| return pd.DataFrame({"Error": [str(e)]}) | |
| def sql_engine(query: str) -> str: | |
| """ | |
| Executes an SQL query on the database and returns the result. | |
| Args: | |
| query (str): The SQL query to execute. | |
| Returns: | |
| str: Query result as a formatted string. | |
| """ | |
| try: | |
| with engine.connect() as con: | |
| rows = con.execute(text(query)).fetchall() | |
| if not rows: | |
| return "No results found." | |
| if len(rows) == 1 and len(rows[0]) == 1: | |
| return str(rows[0][0]) | |
| return "\n".join([", ".join(map(str, row)) for row in rows]) | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| def query_sql(user_query: str) -> str: | |
| schema_info = ( | |
| "The database has a table named 'receipts' with the following schema:\n" | |
| "- receipt_id (INTEGER, primary key)\n" | |
| "- customer_name (VARCHAR(16))\n" | |
| "- price (FLOAT)\n" | |
| "- tip (FLOAT)\n" | |
| "Generate a valid SQL SELECT query using ONLY these column names." | |
| "DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself." | |
| ) | |
| generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}") | |
| if not isinstance(generated_sql, str): | |
| return f"{generated_sql}" | |
| if not generated_sql.strip().lower().startswith(("select", "show", "pragma")): | |
| return "Error: Only SELECT queries are allowed." | |
| result = sql_engine(generated_sql) | |
| try: | |
| float_result = float(result) | |
| return f"{float_result:.2f}" | |
| except ValueError: | |
| return result | |
| def handle_query(user_input: str) -> str: | |
| return query_sql(user_input) | |
| agent = CodeAgent( | |
| tools=[sql_engine], | |
| model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
| ) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| ## Plain Text Query Interface | |
| This tool allows you to query a receipts database using natural language. Simply type your question into the input box, press **Run**, and the tool will generate and execute an SQL query to retrieve relevant data. The results will be displayed in the output box. | |
| ### Usage: | |
| 1. Enter a question related to the receipts data in the text box. | |
| 2. Click **Run** to execute the query. | |
| 3. The result will be displayed in the output box. | |
| > The current receipts table is also displayed for reference. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| user_input = gr.Textbox(label="Ask a question about the data") | |
| run_button = gr.Button("Run", variant="primary") # Purple button | |
| query_output = gr.Textbox(label="Result") | |
| with gr.Column(scale=2): | |
| gr.Markdown("### Receipts Table") | |
| receipts_table = gr.Dataframe(value=get_receipts_table(), label="Receipts Table") | |
| run_button.click(fn=handle_query, inputs=user_input, outputs=query_output) # Trigger only on button press | |
| demo.load(fn=get_receipts_table, outputs=receipts_table) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |