Update app.py
Browse files
app.py
CHANGED
|
@@ -59,64 +59,44 @@ def main():
|
|
| 59 |
st.markdown(markdown_text)
|
| 60 |
|
| 61 |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
# 保存文件到本地:
|
| 65 |
-
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 66 |
-
# st.markdown(tmp_input_audio_file)
|
| 67 |
-
# with open(tmp_input_audio_file, "wb") as f:
|
| 68 |
-
# f.write(audio_file.getbuffer())
|
| 69 |
-
# st.audio(tmp_input_audio_file, format="mp3/wav")
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
#audio_path = " audio_file.name"
|
| 74 |
-
|
| 75 |
-
# audio, sr = torchaudio.load(audio_file)
|
| 76 |
-
# st.audio(audio_file, format="audio/mpeg")
|
| 77 |
-
# audio= audio.unsqueeze(0)
|
| 78 |
-
|
| 79 |
-
# st.markdown("SR")
|
| 80 |
-
# st.markdown(sr)
|
| 81 |
-
# st.markdown("after unsqueeze wav or mp3")
|
| 82 |
-
# st.markdown(audio)
|
| 83 |
-
|
| 84 |
-
#2nd attempt
|
| 85 |
-
# Save file to local storage
|
| 86 |
-
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 87 |
-
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
| 88 |
-
#st.markdown(file_extension)
|
| 89 |
-
if file_extension in [".wav", ".flac"]:
|
| 90 |
-
with open("test.wav", "wb") as f:
|
| 91 |
-
f.write(audio_file.getbuffer())
|
| 92 |
-
|
| 93 |
-
st.audio("test.wav", format="audio/wav")
|
| 94 |
-
|
| 95 |
-
elif file_extension == ".mp3":
|
| 96 |
-
with open("test.mp3", "wb") as f:
|
| 97 |
-
f.write(audio_file.getbuffer())
|
| 98 |
-
|
| 99 |
-
st.audio("test.mp3", format="audio/mpeg")
|
| 100 |
|
| 101 |
#Load the WAV file using torchaudio
|
| 102 |
-
|
| 103 |
-
|
| 104 |
# st.markdown("Before unsquueze wav")
|
| 105 |
# st.markdown(wav)
|
| 106 |
-
|
| 107 |
#Unsqueeze for line 176
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
# Export it as a WAV file
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
|
| 121 |
#RuntimeError: Could not infer dtype of numpy.float32
|
| 122 |
#wav = torch.tensor(wav3).float() / 32768.0
|
|
@@ -130,15 +110,15 @@ def main():
|
|
| 130 |
#Unsqueeze for line 176
|
| 131 |
# wav= wav.unsqueeze(0)
|
| 132 |
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
#wav = my_read_file(wav,max_second_encode)
|
| 143 |
|
| 144 |
#1st attempt
|
|
@@ -154,84 +134,216 @@ def main():
|
|
| 154 |
#st.markdown(shape)
|
| 155 |
|
| 156 |
#st.markdown(squeeze)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
|
| 236 |
|
| 237 |
if __name__ == "__main__":
|
|
|
|
| 59 |
st.markdown(markdown_text)
|
| 60 |
|
| 61 |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
| 62 |
+
try:
|
| 63 |
+
if audio_file:
|
| 64 |
+
#2nd attempt
|
| 65 |
+
# Save file to local storage
|
| 66 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 67 |
+
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
| 68 |
+
#st.markdown(file_extension)
|
| 69 |
+
if file_extension in [".wav", ".flac"]:
|
| 70 |
+
with open("test.wav", "wb") as f:
|
| 71 |
+
f.write(audio_file.getbuffer())
|
| 72 |
|
| 73 |
+
st.audio("test.wav", format="audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
elif file_extension == ".mp3":
|
| 76 |
+
with open("test.mp3", "wb") as f:
|
| 77 |
+
f.write(audio_file.getbuffer())
|
| 78 |
|
| 79 |
+
st.audio("test.mp3", format="audio/mpeg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
#Load the WAV file using torchaudio
|
| 82 |
+
if file_extension in [".wav", ".flac"]:
|
| 83 |
+
wav, sample_rate = torchaudio.load("test.wav")
|
| 84 |
# st.markdown("Before unsquueze wav")
|
| 85 |
# st.markdown(wav)
|
| 86 |
+
file_extension_ori =".wav"
|
| 87 |
#Unsqueeze for line 176
|
| 88 |
+
wav= wav.unsqueeze(0)
|
| 89 |
|
| 90 |
+
elif file_extension == ".mp3":
|
| 91 |
+
# Load an MP3 file
|
| 92 |
+
audio = AudioSegment.from_mp3("test.mp3")
|
| 93 |
|
| 94 |
# Export it as a WAV file
|
| 95 |
+
audio.export("test.wav", format="wav")
|
| 96 |
+
wav3, sample_rate = torchaudio.load("test.wav")
|
| 97 |
+
wav= wav3.unsqueeze(0)
|
| 98 |
+
file_extension_ori =".mp3"
|
| 99 |
+
file_extension =".wav"
|
| 100 |
|
| 101 |
#RuntimeError: Could not infer dtype of numpy.float32
|
| 102 |
#wav = torch.tensor(wav3).float() / 32768.0
|
|
|
|
| 110 |
#Unsqueeze for line 176
|
| 111 |
# wav= wav.unsqueeze(0)
|
| 112 |
|
| 113 |
+
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
| 114 |
|
| 115 |
+
if action == "Add Watermark":
|
| 116 |
+
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 117 |
+
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 118 |
+
if add_watermark_button: # 点击按钮后执行的
|
| 119 |
+
#if audio_file and watermark_text:
|
| 120 |
+
if audio_file:
|
| 121 |
+
with st.spinner("Adding Watermark..."):
|
| 122 |
#wav = my_read_file(wav,max_second_encode)
|
| 123 |
|
| 124 |
#1st attempt
|
|
|
|
| 134 |
#st.markdown(shape)
|
| 135 |
|
| 136 |
#st.markdown(squeeze)
|
| 137 |
+
if file_extension_ori in [".wav", ".flac"]:
|
| 138 |
+
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 139 |
+
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 140 |
+
|
| 141 |
+
st.audio("output.wav", format="audio/wav")
|
| 142 |
+
|
| 143 |
+
with open("output.wav", "rb") as file:
|
| 144 |
+
#file.read()
|
| 145 |
+
#file.write(watermarked_wav.getbuffer())
|
| 146 |
+
binary_data = file.read()
|
| 147 |
+
btn = st.download_button(
|
| 148 |
+
label="Download watermarked audio",
|
| 149 |
+
data=binary_data,
|
| 150 |
+
file_name="output.wav",
|
| 151 |
+
mime="audio/wav",
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
elif file_extension_ori == ".mp3":
|
| 156 |
+
torchaudio.save("output.wav", squeeze, default_sr)
|
| 157 |
+
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
|
| 158 |
+
audio = AudioSegment.from_wav("output.wav")
|
| 159 |
+
|
| 160 |
+
# Export as MP3
|
| 161 |
+
audio.export("output.mp3", format="mp3")
|
| 162 |
+
st.audio("output.mp3", format="audio/mpeg")
|
| 163 |
+
|
| 164 |
+
with open("output.mp3", "rb") as file:
|
| 165 |
+
#file.write(watermarked_wav.getbuffer())
|
| 166 |
+
binary_data = file.read()
|
| 167 |
+
st.download_button(
|
| 168 |
+
label="Download watermarked audio",
|
| 169 |
+
data=binary_data,
|
| 170 |
+
file_name="output.mp3",
|
| 171 |
+
mime="audio/mpeg",
|
| 172 |
+
except error:
|
| 173 |
+
st.error("Please input audio with one channel (mono-channel)")
|
| 174 |
+
|
| 175 |
+
# if audio_file:
|
| 176 |
+
# # 保存文件到本地:
|
| 177 |
+
# # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 178 |
+
# # st.markdown(tmp_input_audio_file)
|
| 179 |
+
# # with open(tmp_input_audio_file, "wb") as f:
|
| 180 |
+
# # f.write(audio_file.getbuffer())
|
| 181 |
+
# # st.audio(tmp_input_audio_file, format="mp3/wav")
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# #1st attempt
|
| 185 |
+
# #audio_path = " audio_file.name"
|
| 186 |
+
|
| 187 |
+
# # audio, sr = torchaudio.load(audio_file)
|
| 188 |
+
# # st.audio(audio_file, format="audio/mpeg")
|
| 189 |
+
# # audio= audio.unsqueeze(0)
|
| 190 |
+
|
| 191 |
+
# # st.markdown("SR")
|
| 192 |
+
# # st.markdown(sr)
|
| 193 |
+
# # st.markdown("after unsqueeze wav or mp3")
|
| 194 |
+
# # st.markdown(audio)
|
| 195 |
+
|
| 196 |
+
# #2nd attempt
|
| 197 |
+
# # Save file to local storage
|
| 198 |
+
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 199 |
+
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
| 200 |
+
# #st.markdown(file_extension)
|
| 201 |
+
# if file_extension in [".wav", ".flac"]:
|
| 202 |
+
# with open("test.wav", "wb") as f:
|
| 203 |
+
# f.write(audio_file.getbuffer())
|
| 204 |
+
|
| 205 |
+
# st.audio("test.wav", format="audio/wav")
|
| 206 |
+
|
| 207 |
+
# elif file_extension == ".mp3":
|
| 208 |
+
# with open("test.mp3", "wb") as f:
|
| 209 |
+
# f.write(audio_file.getbuffer())
|
| 210 |
+
|
| 211 |
+
# st.audio("test.mp3", format="audio/mpeg")
|
| 212 |
+
|
| 213 |
+
# #Load the WAV file using torchaudio
|
| 214 |
+
# if file_extension in [".wav", ".flac"]:
|
| 215 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
| 216 |
+
# # st.markdown("Before unsquueze wav")
|
| 217 |
+
# # st.markdown(wav)
|
| 218 |
+
# file_extension_ori =".wav"
|
| 219 |
+
# #Unsqueeze for line 176
|
| 220 |
+
# wav= wav.unsqueeze(0)
|
| 221 |
+
|
| 222 |
+
# elif file_extension == ".mp3":
|
| 223 |
+
# # Load an MP3 file
|
| 224 |
+
# audio = AudioSegment.from_mp3("test.mp3")
|
| 225 |
+
|
| 226 |
+
# # Export it as a WAV file
|
| 227 |
+
# audio.export("test.wav", format="wav")
|
| 228 |
+
# wav3, sample_rate = torchaudio.load("test.wav")
|
| 229 |
+
# wav= wav3.unsqueeze(0)
|
| 230 |
+
# file_extension_ori =".mp3"
|
| 231 |
+
# file_extension =".wav"
|
| 232 |
+
|
| 233 |
+
# #RuntimeError: Could not infer dtype of numpy.float32
|
| 234 |
+
# #wav = torch.tensor(wav3).float() / 32768.0
|
| 235 |
+
|
| 236 |
+
# #RuntimeError: Numpy is not available
|
| 237 |
+
# # wav = torch.from_numpy(wav3) #/32768.0
|
| 238 |
+
# # wav = wav.unsqueeze(0).unsqueeze(0)
|
| 239 |
+
# # st.markdown("Before unsqueeze mp3")
|
| 240 |
+
# # st.markdown(wav)
|
| 241 |
+
|
| 242 |
+
# #Unsqueeze for line 176
|
| 243 |
+
# # wav= wav.unsqueeze(0)
|
| 244 |
+
|
| 245 |
+
# action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
| 246 |
+
|
| 247 |
+
# if action == "Add Watermark":
|
| 248 |
+
# #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 249 |
+
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 250 |
+
# if add_watermark_button: # 点击按钮后执行的
|
| 251 |
+
# #if audio_file and watermark_text:
|
| 252 |
+
# if audio_file:
|
| 253 |
+
# with st.spinner("Adding Watermark..."):
|
| 254 |
+
# #wav = my_read_file(wav,max_second_encode)
|
| 255 |
+
|
| 256 |
+
# #1st attempt
|
| 257 |
+
# watermark = model.get_watermark(wav, default_sr)
|
| 258 |
+
# watermarked_audio = wav + watermark
|
| 259 |
+
# print(watermarked_audio.size())
|
| 260 |
+
# size = watermarked_audio.size()
|
| 261 |
+
# #st.markdown(size)
|
| 262 |
+
|
| 263 |
+
# print(watermarked_audio.squeeze())
|
| 264 |
+
# squeeze = watermarked_audio.squeeze(1)
|
| 265 |
+
# shape = squeeze.size()
|
| 266 |
+
# #st.markdown(shape)
|
| 267 |
+
|
| 268 |
+
# #st.markdown(squeeze)
|
| 269 |
+
# if file_extension_ori in [".wav", ".flac"]:
|
| 270 |
+
# torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 271 |
+
# watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 272 |
+
|
| 273 |
+
# st.audio("output.wav", format="audio/wav")
|
| 274 |
+
|
| 275 |
+
# with open("output.wav", "rb") as file:
|
| 276 |
+
# #file.read()
|
| 277 |
+
# #file.write(watermarked_wav.getbuffer())
|
| 278 |
+
# binary_data = file.read()
|
| 279 |
+
# btn = st.download_button(
|
| 280 |
+
# label="Download watermarked audio",
|
| 281 |
+
# data=binary_data,
|
| 282 |
+
# file_name="output.wav",
|
| 283 |
+
# mime="audio/wav",
|
| 284 |
+
# )
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# elif file_extension_ori == ".mp3":
|
| 288 |
+
# torchaudio.save("output.wav", squeeze, default_sr)
|
| 289 |
+
# watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
|
| 290 |
+
# audio = AudioSegment.from_wav("output.wav")
|
| 291 |
+
|
| 292 |
+
# # Export as MP3
|
| 293 |
+
# audio.export("output.mp3", format="mp3")
|
| 294 |
+
# st.audio("output.mp3", format="audio/mpeg")
|
| 295 |
|
| 296 |
+
# with open("output.mp3", "rb") as file:
|
| 297 |
+
# #file.write(watermarked_wav.getbuffer())
|
| 298 |
+
# binary_data = file.read()
|
| 299 |
+
# st.download_button(
|
| 300 |
+
# label="Download watermarked audio",
|
| 301 |
+
# data=binary_data,
|
| 302 |
+
# file_name="output.mp3",
|
| 303 |
+
# mime="audio/mpeg",
|
| 304 |
+
# )
|
| 305 |
+
# # except RuntimeError:
|
| 306 |
+
# # st.error("Please input audio with one channel (mono-channel)")
|
| 307 |
|
| 308 |
+
# elif action == "Detect Watermark":
|
| 309 |
+
# detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
|
| 310 |
|
| 311 |
+
# # if audio_file:
|
| 312 |
+
# # #1st attempt
|
| 313 |
+
# # watermark = model.get_watermark(wav, default_sr)
|
| 314 |
+
# # watermarked_audio = wav + watermark
|
| 315 |
+
# # print(watermarked_audio.size())
|
| 316 |
+
# # size = watermarked_audio.size()
|
| 317 |
+
# # #st.markdown(size)
|
| 318 |
|
| 319 |
|
| 320 |
+
# if detect_watermark_button:
|
| 321 |
+
# with st.spinner("Detecting..."):
|
| 322 |
+
# # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
|
| 323 |
+
# # st.markdown("Probability of audio being watermarked: ")
|
| 324 |
+
# # st.markdown(result)
|
| 325 |
+
# # st.markdown("This is likely a watermarked audio!")
|
| 326 |
+
# # print(f"\nThis is likely a watermarked audio: {result}")
|
| 327 |
+
|
| 328 |
+
# #Run on an unwatermarked audio
|
| 329 |
+
|
| 330 |
+
# if file_extension in [".wav", ".flac"]:
|
| 331 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
| 332 |
+
# wav= wav.unsqueeze(0)
|
| 333 |
+
|
| 334 |
+
# elif file_extension == ".mp3":
|
| 335 |
+
# # Load an MP3 file
|
| 336 |
+
# audio = AudioSegment.from_mp3("test.mp3")
|
| 337 |
+
# # Export it as a WAV file
|
| 338 |
+
# audio.export("test.wav", format="wav")
|
| 339 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
| 340 |
+
# wav= wav.unsqueeze(0)
|
| 341 |
|
| 342 |
+
# result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
|
| 343 |
+
# print(f"This is likely an unwatermarked audio: {result2}")
|
| 344 |
+
# st.markdown("Probability of audio being watermarked: ")
|
| 345 |
+
# st.markdown(result2)
|
| 346 |
+
# st.markdown("This is likely an unwatermarked audio!")
|
| 347 |
|
| 348 |
|
| 349 |
if __name__ == "__main__":
|