Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ from wavmark.utils import file_reader
|
|
| 10 |
from audioseal import AudioSeal
|
| 11 |
import torchaudio
|
| 12 |
from pydub import AudioSegment
|
|
|
|
| 13 |
|
| 14 |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 15 |
|
|
@@ -141,6 +142,13 @@ def main():
|
|
| 141 |
st.markdown(wav)
|
| 142 |
wav= wav.unsqueeze(0)
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
# Play the audio file (WAV format)
|
| 145 |
st.audio(wav, format="audio/wav")
|
| 146 |
|
|
|
|
| 10 |
from audioseal import AudioSeal
|
| 11 |
import torchaudio
|
| 12 |
from pydub import AudioSegment
|
| 13 |
+
import io
|
| 14 |
|
| 15 |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
| 16 |
|
|
|
|
| 142 |
st.markdown(wav)
|
| 143 |
wav= wav.unsqueeze(0)
|
| 144 |
|
| 145 |
+
#2nd way
|
| 146 |
+
# Convert the tensor to a byte-like object in WAV format
|
| 147 |
+
with io.BytesIO() as buffer:
|
| 148 |
+
# Save the audio to the buffer using torchaudio
|
| 149 |
+
torchaudio.save(buffer, wav, default_sr, format="wav")
|
| 150 |
+
# Get the byte data from the buffer
|
| 151 |
+
wav = buffer.getvalue()
|
| 152 |
# Play the audio file (WAV format)
|
| 153 |
st.audio(wav, format="audio/wav")
|
| 154 |
|