Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import logging
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PyPDF2 import PdfReader
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 11 |
+
from langchain_community.llms import HuggingFaceHub
|
| 12 |
+
from transformers import pipeline # For fallback if Hub fails
|
| 13 |
+
|
| 14 |
+
# Set up logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
# Check API token
|
| 19 |
+
if "HUGGINGFACEHUB_API_TOKEN" not in os.environ:
|
| 20 |
+
st.error("HUGGINGFACEHUB_API_TOKEN not set in secrets. Add it in Space settings.")
|
| 21 |
+
st.stop()
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
# Function to process PDF
|
| 25 |
+
def process_pdf(uploaded_file):
|
| 26 |
+
try:
|
| 27 |
+
logger.info("Starting PDF processing")
|
| 28 |
+
pdf_reader = PdfReader(BytesIO(uploaded_file.getvalue()))
|
| 29 |
+
text = ""
|
| 30 |
+
for page in pdf_reader.pages:
|
| 31 |
+
extracted = page.extract_text()
|
| 32 |
+
if extracted:
|
| 33 |
+
text += extracted + "\n"
|
| 34 |
+
|
| 35 |
+
if not text:
|
| 36 |
+
raise ValueError("No text extracted from PDF.")
|
| 37 |
+
|
| 38 |
+
# Chunk text (increased overlap for better context)
|
| 39 |
+
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=800, chunk_overlap=200, length_function=len)
|
| 40 |
+
chunks = text_splitter.split_text(text)
|
| 41 |
+
|
| 42 |
+
# Embeddings (light model)
|
| 43 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
|
| 44 |
+
|
| 45 |
+
# Vector store
|
| 46 |
+
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
| 47 |
+
logger.info("PDF processed successfully")
|
| 48 |
+
return vector_store
|
| 49 |
+
except Exception as e:
|
| 50 |
+
logger.error(f"PDF processing error: {str(e)}")
|
| 51 |
+
st.error(f"Error processing PDF: {str(e)}")
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
# Function to answer questions
|
| 55 |
+
def answer_question(vector_store, query):
|
| 56 |
+
try:
|
| 57 |
+
logger.info(f"Answering query: {query}")
|
| 58 |
+
# Lighter LLM via pipeline for faster CPU inference
|
| 59 |
+
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 60 |
+
|
| 61 |
+
# Retrieve top chunks
|
| 62 |
+
docs = vector_store.similarity_search(query, k=3)
|
| 63 |
+
context = "\n".join([doc.page_content for doc in docs])
|
| 64 |
+
|
| 65 |
+
# Prompt
|
| 66 |
+
prompt = f"Use this context to answer concisely: {context}\nQuestion: {query}\nAnswer:"
|
| 67 |
+
response = qa_pipeline(prompt, max_length=256, num_return_sequences=1)[0]['generated_text']
|
| 68 |
+
|
| 69 |
+
logger.info("Answer generated")
|
| 70 |
+
return response.strip()
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logger.error(f"Answer generation error: {str(e)}")
|
| 73 |
+
st.error(f"Error answering: {str(e)}")
|
| 74 |
+
return "Unable to generate answer."
|
| 75 |
+
|
| 76 |
+
# Streamlit UI with chat history
|
| 77 |
+
st.title("Smart PDF Q&A")
|
| 78 |
+
st.write("Upload a PDF and ask questions! Chat history is preserved.")
|
| 79 |
+
|
| 80 |
+
# Initialize session state
|
| 81 |
+
if "messages" not in st.session_state:
|
| 82 |
+
st.session_state.messages = []
|
| 83 |
+
if "vector_store" not in st.session_state:
|
| 84 |
+
st.session_state.vector_store = None
|
| 85 |
+
|
| 86 |
+
# PDF upload and process
|
| 87 |
+
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
|
| 88 |
+
if uploaded_file:
|
| 89 |
+
if st.button("Process PDF"):
|
| 90 |
+
with st.spinner("Processing..."):
|
| 91 |
+
vector_store = process_pdf(uploaded_file)
|
| 92 |
+
if vector_store:
|
| 93 |
+
st.session_state.vector_store = vector_store
|
| 94 |
+
st.success("PDF ready! Ask away.")
|
| 95 |
+
st.session_state.messages = [] # Reset chat on new PDF
|
| 96 |
+
|
| 97 |
+
# Display chat history
|
| 98 |
+
for message in st.session_state.messages:
|
| 99 |
+
with st.chat_message(message["role"]):
|
| 100 |
+
st.markdown(message["content"])
|
| 101 |
+
|
| 102 |
+
# Question input
|
| 103 |
+
if st.session_state.vector_store:
|
| 104 |
+
if prompt := st.chat_input("Ask a question:"):
|
| 105 |
+
# Add user message
|
| 106 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 107 |
+
with st.chat_message("user"):
|
| 108 |
+
st.markdown(prompt)
|
| 109 |
+
|
| 110 |
+
# Generate answer
|
| 111 |
+
with st.chat_message("assistant"):
|
| 112 |
+
with st.spinner("Thinking..."):
|
| 113 |
+
answer = answer_question(st.session_state.vector_store, prompt)
|
| 114 |
+
st.markdown(answer)
|
| 115 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"App initialization failed: {str(e)}")
|
| 119 |
+
st.error(f"Initialization error: {str(e)}. Check logs or try factory reset.")
|