Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
from fastapi import FastAPI, HTTPException
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
-
|
| 5 |
from pydantic import BaseModel
|
| 6 |
|
| 7 |
# Initialize FastAPI app
|
|
@@ -16,44 +16,34 @@ token = os.getenv("GITHUB_TOKEN")
|
|
| 16 |
if not token:
|
| 17 |
raise ValueError("GITHUB_TOKEN environment variable not set")
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
model = os.getenv("MODEL_NAME", "gpt-4o-mini") # Use a valid model name, e.g., gpt-4o-mini or equivalent
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
client = AsyncOpenAI(
|
| 25 |
-
base_url=endpoint,
|
| 26 |
-
api_key=token,
|
| 27 |
-
# Explicitly disable proxies if not needed
|
| 28 |
-
http_client=None # Avoid passing unexpected kwargs like proxies
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
# Async generator to stream chunks
|
| 32 |
async def stream_response(prompt: str):
|
| 33 |
try:
|
| 34 |
-
# Create streaming chat completion
|
| 35 |
-
|
|
|
|
| 36 |
messages=[
|
| 37 |
{"role": "system", "content": "You are a helpful assistant."},
|
| 38 |
{"role": "user", "content": prompt}
|
| 39 |
],
|
| 40 |
temperature=1.0,
|
| 41 |
top_p=1.0,
|
| 42 |
-
|
| 43 |
-
stream=True
|
| 44 |
)
|
| 45 |
|
| 46 |
-
# Yield each chunk as it arrives
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
yield content
|
| 52 |
|
| 53 |
except Exception as err:
|
| 54 |
yield f"Error: {str(err)}"
|
| 55 |
|
| 56 |
-
# Endpoint to handle prompt and stream response
|
| 57 |
@app.post("/generate")
|
| 58 |
async def generate_response(request: PromptRequest):
|
| 59 |
try:
|
|
@@ -68,4 +58,4 @@ async def generate_response(request: PromptRequest):
|
|
| 68 |
# Health check endpoint for Hugging Face Spaces
|
| 69 |
@app.get("/")
|
| 70 |
async def health_check():
|
| 71 |
-
return {"status": "healthy"}
|
|
|
|
| 1 |
import os
|
| 2 |
from fastapi import FastAPI, HTTPException
|
| 3 |
from fastapi.responses import StreamingResponse
|
| 4 |
+
import openai # Use OpenAI's official API library
|
| 5 |
from pydantic import BaseModel
|
| 6 |
|
| 7 |
# Initialize FastAPI app
|
|
|
|
| 16 |
if not token:
|
| 17 |
raise ValueError("GITHUB_TOKEN environment variable not set")
|
| 18 |
|
| 19 |
+
# Initialize OpenAI API client with API key
|
| 20 |
+
openai.api_key = token # Set the OpenAI API key
|
|
|
|
| 21 |
|
| 22 |
+
# Async generator to stream chunks from OpenAI's API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
async def stream_response(prompt: str):
|
| 24 |
try:
|
| 25 |
+
# Create streaming chat completion with OpenAI API
|
| 26 |
+
response = openai.ChatCompletion.create(
|
| 27 |
+
model="gpt-4", # Replace with the model you're using (e.g., gpt-3.5-turbo or gpt-4)
|
| 28 |
messages=[
|
| 29 |
{"role": "system", "content": "You are a helpful assistant."},
|
| 30 |
{"role": "user", "content": prompt}
|
| 31 |
],
|
| 32 |
temperature=1.0,
|
| 33 |
top_p=1.0,
|
| 34 |
+
stream=True # Enable streaming
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# Yield each chunk of the response as it arrives
|
| 38 |
+
for chunk in response:
|
| 39 |
+
content = chunk.get("choices", [{}])[0].get("delta", {}).get("content", "")
|
| 40 |
+
if content:
|
| 41 |
+
yield content # Yield the generated content
|
|
|
|
| 42 |
|
| 43 |
except Exception as err:
|
| 44 |
yield f"Error: {str(err)}"
|
| 45 |
|
| 46 |
+
# Endpoint to handle the prompt and stream response
|
| 47 |
@app.post("/generate")
|
| 48 |
async def generate_response(request: PromptRequest):
|
| 49 |
try:
|
|
|
|
| 58 |
# Health check endpoint for Hugging Face Spaces
|
| 59 |
@app.get("/")
|
| 60 |
async def health_check():
|
| 61 |
+
return {"status": "healthy"}
|