Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,14 +9,16 @@ from nltk.data import load as nltk_load
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
|
| 12 |
-
|
| 13 |
-
sent_cut_en = NLTK.tokenize
|
| 14 |
-
clf = joblib.load(f'data/gpt2-large-model', 'rb')
|
| 15 |
-
|
| 16 |
model_id = 'gpt2-large'
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
CROSS_ENTROPY = torch.nn.CrossEntropyLoss(reduction='none')
|
| 21 |
|
| 22 |
|
|
@@ -99,6 +101,7 @@ def predict(text):
|
|
| 99 |
return out
|
| 100 |
|
| 101 |
|
|
|
|
| 102 |
with gr.Blocks() as demo:
|
| 103 |
gr.Markdown(
|
| 104 |
"""
|
|
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
|
| 11 |
|
| 12 |
+
print("Loading model & Tokenizer...")
|
|
|
|
|
|
|
|
|
|
| 13 |
model_id = 'gpt2-large'
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 16 |
|
| 17 |
+
print("Loading NLTL & and scikit-learn model...")
|
| 18 |
+
NLTK = nltk_load('data/english.pickle')
|
| 19 |
+
sent_cut_en = NLTK.tokenize
|
| 20 |
+
clf = joblib.load(f'data/gpt2-large-model', 'rb')
|
| 21 |
+
|
| 22 |
CROSS_ENTROPY = torch.nn.CrossEntropyLoss(reduction='none')
|
| 23 |
|
| 24 |
|
|
|
|
| 101 |
return out
|
| 102 |
|
| 103 |
|
| 104 |
+
print("Building Gradio Interface...")
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
gr.Markdown(
|
| 107 |
"""
|