| # from transformers import MarianMTModel, MarianTokenizer | |
| # def translate_text(text, src_lang="es", tgt_lang="en"): | |
| # model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}" | |
| # tokenizer = MarianTokenizer.from_pretrained(model_name) | |
| # model = MarianMTModel.from_pretrained(model_name) | |
| # inputs = tokenizer(text, return_tensors="pt", padding=True) | |
| # translated = model.generate(**inputs) | |
| # return tokenizer.decode(translated[0], skip_special_tokens=True) | |
| # if __name__ == "__main__": | |
| # input_text = "¿Cómo estás?" | |
| # print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en")) | |
| import spaces | |
| from transformers import MarianMTModel, MarianTokenizer | |
| # Preload the translation model globally | |
| model_name = "Helsinki-NLP/opus-mt-mul-en" | |
| tokenizer = MarianTokenizer.from_pretrained(model_name) | |
| translation_model = MarianMTModel.from_pretrained(model_name) | |
| def translate_text(text, src_lang="auto", tgt_lang="en"): | |
| """Translate text from any language to English.""" | |
| inputs = tokenizer(text, return_tensors="pt", padding=True) | |
| translated = translation_model.generate(**inputs) | |
| return tokenizer.decode(translated[0], skip_special_tokens=True) | |