SandaAbhishekSagar
commited on
Commit
·
687bf24
1
Parent(s):
50936f2
revamped code
Browse files- image_generator.py +11 -24
- translate.py +4 -3
image_generator.py
CHANGED
|
@@ -31,34 +31,21 @@
|
|
| 31 |
# print("Generated Image Path:", generate_image(prompt))
|
| 32 |
|
| 33 |
|
| 34 |
-
# from diffusers import StableDiffusionPipeline
|
| 35 |
-
# import torch
|
| 36 |
-
|
| 37 |
-
# # Preload the model globally
|
| 38 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
-
# model = StableDiffusionPipeline.from_pretrained(
|
| 40 |
-
# "stabilityai/stable-diffusion-2-1-base",
|
| 41 |
-
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 42 |
-
# )
|
| 43 |
-
# model.to(device)
|
| 44 |
-
|
| 45 |
-
# def generate_image(prompt):
|
| 46 |
-
# """Generate an image from a text prompt."""
|
| 47 |
-
# image = model(prompt).images[0]
|
| 48 |
-
# output_path = "output.png"
|
| 49 |
-
# image.save(output_path)
|
| 50 |
-
# return output_path
|
| 51 |
-
|
| 52 |
from diffusers import StableDiffusionPipeline
|
| 53 |
import torch
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def generate_image(prompt):
|
| 60 |
-
"""Generate an image
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
image.save(image_path)
|
| 64 |
return image_path
|
|
|
|
| 31 |
# print("Generated Image Path:", generate_image(prompt))
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
from diffusers import StableDiffusionPipeline
|
| 35 |
import torch
|
| 36 |
|
| 37 |
+
# Preload the model globally
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
model = StableDiffusionPipeline.from_pretrained(
|
| 40 |
+
"runwayml/stable-diffusion-v1-5"
|
| 41 |
+
)
|
| 42 |
+
pipeline = pipeline.to(device)
|
| 43 |
|
| 44 |
def generate_image(prompt):
|
| 45 |
+
"""Generate an image based on the input prompt."""
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
image = pipeline(prompt).images[0]
|
| 48 |
+
# Save the image locally and return the file path
|
| 49 |
+
image_path = "generated_image.png"
|
| 50 |
image.save(image_path)
|
| 51 |
return image_path
|
translate.py
CHANGED
|
@@ -25,13 +25,14 @@
|
|
| 25 |
# inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 26 |
# translated = translation_model.generate(**inputs)
|
| 27 |
# return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 28 |
-
|
| 29 |
from transformers import MarianMTModel, MarianTokenizer
|
| 30 |
|
| 31 |
# Preload the translation model globally
|
|
|
|
| 32 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
| 33 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 34 |
-
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 35 |
|
| 36 |
# Define supported languages for the dropdown
|
| 37 |
SUPPORTED_LANGUAGES = {
|
|
@@ -75,7 +76,7 @@ def translate_text(text, src_lang, tgt_lang="en"):
|
|
| 75 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 76 |
|
| 77 |
# Tokenize the input text
|
| 78 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 79 |
|
| 80 |
# Perform translation
|
| 81 |
translated = translation_model.generate(**inputs)
|
|
|
|
| 25 |
# inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 26 |
# translated = translation_model.generate(**inputs)
|
| 27 |
# return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 28 |
+
import torch
|
| 29 |
from transformers import MarianMTModel, MarianTokenizer
|
| 30 |
|
| 31 |
# Preload the translation model globally
|
| 32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
| 34 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 35 |
+
translation_model = MarianMTModel.from_pretrained(model_name).to(device)
|
| 36 |
|
| 37 |
# Define supported languages for the dropdown
|
| 38 |
SUPPORTED_LANGUAGES = {
|
|
|
|
| 76 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 77 |
|
| 78 |
# Tokenize the input text
|
| 79 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True).to(device)
|
| 80 |
|
| 81 |
# Perform translation
|
| 82 |
translated = translation_model.generate(**inputs)
|