SandaAbhishekSagar
commited on
Commit
·
add94a1
1
Parent(s):
1c1d558
pushing experiment code
Browse files- app.py +135 -25
- image_generator.py +0 -50
- translate.py +0 -27
app.py
CHANGED
|
@@ -26,34 +26,144 @@
|
|
| 26 |
# interface.launch()
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import gradio as gr
|
| 30 |
-
from
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
def
|
| 34 |
-
|
| 35 |
-
# Translate input to English
|
| 36 |
-
translated_text = translate_text(input_text, src_lang, "en")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
return
|
| 42 |
-
|
| 43 |
-
# Gradio Interface
|
| 44 |
-
interface = gr.Interface(
|
| 45 |
-
fn=chatbot,
|
| 46 |
-
inputs=[
|
| 47 |
-
gr.Textbox(label="Enter text in any language"),
|
| 48 |
-
gr.Textbox(label="Source Language (optional, e.g., 'es' for Spanish)", value="auto"),
|
| 49 |
-
],
|
| 50 |
-
outputs=[
|
| 51 |
-
gr.Textbox(label="Translated Text"),
|
| 52 |
-
gr.Image(label="Generated Image"),
|
| 53 |
-
],
|
| 54 |
-
title="LinguaVision - Multilingual Chatbot with Image Generation",
|
| 55 |
-
description="Enter text in any language to translate it into English and generate an image based on the text.\n NOTE: This tool takes approximately 12 minutes to execute.",
|
| 56 |
-
)
|
| 57 |
|
| 58 |
if __name__ == "__main__":
|
| 59 |
-
interface
|
|
|
|
|
|
| 26 |
# interface.launch()
|
| 27 |
|
| 28 |
|
| 29 |
+
# import gradio as gr
|
| 30 |
+
# from translate import translate_text
|
| 31 |
+
# from image_generator import generate_image
|
| 32 |
+
|
| 33 |
+
# def chatbot(input_text, src_lang="auto"):
|
| 34 |
+
# """Process user input, translate it, and generate an image."""
|
| 35 |
+
# # Translate input to English
|
| 36 |
+
# translated_text = translate_text(input_text, src_lang, "en")
|
| 37 |
+
|
| 38 |
+
# # Generate an image based on the translated text
|
| 39 |
+
# image_path = generate_image(f"A scene depicting: {translated_text}")
|
| 40 |
+
|
| 41 |
+
# return translated_text, image_path
|
| 42 |
+
|
| 43 |
+
# # Gradio Interface
|
| 44 |
+
# interface = gr.Interface(
|
| 45 |
+
# fn=chatbot,
|
| 46 |
+
# inputs=[
|
| 47 |
+
# gr.Textbox(label="Enter text in any language"),
|
| 48 |
+
# gr.Textbox(label="Source Language (optional, e.g., 'es' for Spanish)", value="auto"),
|
| 49 |
+
# ],
|
| 50 |
+
# outputs=[
|
| 51 |
+
# gr.Textbox(label="Translated Text"),
|
| 52 |
+
# gr.Image(label="Generated Image"),
|
| 53 |
+
# ],
|
| 54 |
+
# title="LinguaVision - Multilingual Chatbot with Image Generation",
|
| 55 |
+
# description="Enter text in any language to translate it into English and generate an image based on the text.\n NOTE: This tool takes approximately 12 minutes to execute.",
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# if __name__ == "__main__":
|
| 59 |
+
# interface.launch(share=True)
|
| 60 |
+
|
| 61 |
+
import torch
|
| 62 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 63 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 64 |
import gradio as gr
|
| 65 |
+
from typing import Tuple, Optional
|
| 66 |
+
import logging
|
| 67 |
+
|
| 68 |
+
class LinguaVisionSystem:
|
| 69 |
+
def __init__(self, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
|
| 70 |
+
self.device = device
|
| 71 |
+
self.logger = logging.getLogger(__name__)
|
| 72 |
+
|
| 73 |
+
# Initialize translation pipeline
|
| 74 |
+
self.translation_config = {
|
| 75 |
+
"model_name": "Helsinki-NLP/opus-mt-mul-en",
|
| 76 |
+
"max_length": 128,
|
| 77 |
+
"num_beams": 4
|
| 78 |
+
}
|
| 79 |
+
self._init_translation_pipeline()
|
| 80 |
+
|
| 81 |
+
# Initialize image generation pipeline
|
| 82 |
+
self.image_config = {
|
| 83 |
+
"model_id": "stabilityai/stable-diffusion-2-1-base",
|
| 84 |
+
"safety_checker": None, # Disable for performance
|
| 85 |
+
"scheduler": DDIMScheduler
|
| 86 |
+
}
|
| 87 |
+
self._init_image_pipeline()
|
| 88 |
+
|
| 89 |
+
def _init_translation_pipeline(self) -> None:
|
| 90 |
+
try:
|
| 91 |
+
self.tokenizer = MarianTokenizer.from_pretrained(
|
| 92 |
+
self.translation_config["model_name"]
|
| 93 |
+
)
|
| 94 |
+
self.translation_model = MarianMTModel.from_pretrained(
|
| 95 |
+
self.translation_config["model_name"]
|
| 96 |
+
).to(self.device)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
self.logger.error(f"Translation pipeline initialization failed: {e}")
|
| 99 |
+
raise
|
| 100 |
+
|
| 101 |
+
def _init_image_pipeline(self) -> None:
|
| 102 |
+
try:
|
| 103 |
+
self.image_pipeline = StableDiffusionPipeline.from_pretrained(
|
| 104 |
+
self.image_config["model_id"],
|
| 105 |
+
scheduler=self.image_config["scheduler"](),
|
| 106 |
+
safety_checker=self.image_config["safety_checker"]
|
| 107 |
+
).to(self.device)
|
| 108 |
+
except Exception as e:
|
| 109 |
+
self.logger.error(f"Image pipeline initialization failed: {e}")
|
| 110 |
+
raise
|
| 111 |
+
|
| 112 |
+
@torch.inference_mode()
|
| 113 |
+
def translate_text(self, text: str) -> Optional[str]:
|
| 114 |
+
try:
|
| 115 |
+
inputs = self.tokenizer(
|
| 116 |
+
text,
|
| 117 |
+
return_tensors="pt",
|
| 118 |
+
padding=True,
|
| 119 |
+
truncation=True,
|
| 120 |
+
max_length=self.translation_config["max_length"]
|
| 121 |
+
).to(self.device)
|
| 122 |
+
|
| 123 |
+
translated = self.translation_model.generate(
|
| 124 |
+
**inputs,
|
| 125 |
+
num_beams=self.translation_config["num_beams"],
|
| 126 |
+
early_stopping=True
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return self.tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 130 |
+
except Exception as e:
|
| 131 |
+
self.logger.error(f"Translation failed: {e}")
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
def process_input(self, text: str) -> Tuple[str, str]:
|
| 135 |
+
translated_text = self.translate_text(text)
|
| 136 |
+
if translated_text:
|
| 137 |
+
image = self.image_pipeline(
|
| 138 |
+
prompt=f"A photorealistic scene depicting: {translated_text}",
|
| 139 |
+
num_inference_steps=50,
|
| 140 |
+
guidance_scale=7.5
|
| 141 |
+
).images[0]
|
| 142 |
+
|
| 143 |
+
image_path = "output.png"
|
| 144 |
+
image.save(image_path)
|
| 145 |
+
return translated_text, image_path
|
| 146 |
+
return "Translation failed", None
|
| 147 |
|
| 148 |
+
def create_interface() -> gr.Interface:
|
| 149 |
+
system = LinguaVisionSystem()
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
interface = gr.Interface(
|
| 152 |
+
fn=system.process_input,
|
| 153 |
+
inputs=gr.Textbox(
|
| 154 |
+
label="Enter text in any language",
|
| 155 |
+
placeholder="Type your text here..."
|
| 156 |
+
),
|
| 157 |
+
outputs=[
|
| 158 |
+
gr.Textbox(label="English Translation"),
|
| 159 |
+
gr.Image(label="Generated Visualization")
|
| 160 |
+
],
|
| 161 |
+
title="LinguaVision: AI-Powered Language Learning Assistant",
|
| 162 |
+
description="Transform text into visuals for enhanced language learning"
|
| 163 |
+
)
|
| 164 |
|
| 165 |
+
return interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
+
interface = create_interface()
|
| 169 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
image_generator.py
DELETED
|
@@ -1,50 +0,0 @@
|
|
| 1 |
-
# from diffusers import StableDiffusionPipeline
|
| 2 |
-
|
| 3 |
-
# def generate_image(prompt):
|
| 4 |
-
# model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
| 5 |
-
# model.to("cuda") # Use GPU for faster generation
|
| 6 |
-
# image = model(prompt).images[0]
|
| 7 |
-
# image.save("output.png")
|
| 8 |
-
# return "output.png"
|
| 9 |
-
|
| 10 |
-
# if __name__ == "__main__":
|
| 11 |
-
# prompt = "A friendly person saying 'How are you?'"
|
| 12 |
-
# print("Generated Image Path:", generate_image(prompt))
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# from diffusers import StableDiffusionPipeline
|
| 16 |
-
# import torch
|
| 17 |
-
|
| 18 |
-
# def generate_image(prompt):
|
| 19 |
-
# model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
| 20 |
-
|
| 21 |
-
# # Use GPU if available, otherwise fallback to CPU
|
| 22 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
-
# model.to(device)
|
| 24 |
-
|
| 25 |
-
# image = model(prompt).images[0]
|
| 26 |
-
# image.save("output.png")
|
| 27 |
-
# return "output.png"
|
| 28 |
-
|
| 29 |
-
# if __name__ == "__main__":
|
| 30 |
-
# prompt = "A friendly person saying 'How are you?'"
|
| 31 |
-
# print("Generated Image Path:", generate_image(prompt))
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
from diffusers import StableDiffusionPipeline
|
| 35 |
-
import torch
|
| 36 |
-
|
| 37 |
-
# Preload the model globally
|
| 38 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
-
model = StableDiffusionPipeline.from_pretrained(
|
| 40 |
-
"stabilityai/stable-diffusion-2-1-base",
|
| 41 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 42 |
-
)
|
| 43 |
-
model.to(device)
|
| 44 |
-
|
| 45 |
-
def generate_image(prompt):
|
| 46 |
-
"""Generate an image from a text prompt."""
|
| 47 |
-
image = model(prompt).images[0]
|
| 48 |
-
output_path = "output.png"
|
| 49 |
-
image.save(output_path)
|
| 50 |
-
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
translate.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
# from transformers import MarianMTModel, MarianTokenizer
|
| 2 |
-
|
| 3 |
-
# def translate_text(text, src_lang="es", tgt_lang="en"):
|
| 4 |
-
# model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
| 5 |
-
# tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 6 |
-
# model = MarianMTModel.from_pretrained(model_name)
|
| 7 |
-
# inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 8 |
-
# translated = model.generate(**inputs)
|
| 9 |
-
# return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 10 |
-
|
| 11 |
-
# if __name__ == "__main__":
|
| 12 |
-
# input_text = "¿Cómo estás?"
|
| 13 |
-
# print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en"))
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
from transformers import MarianMTModel, MarianTokenizer
|
| 17 |
-
|
| 18 |
-
# Preload the translation model globally
|
| 19 |
-
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
| 20 |
-
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 21 |
-
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 22 |
-
|
| 23 |
-
def translate_text(text, src_lang="auto", tgt_lang="en"):
|
| 24 |
-
"""Translate text from any language to English."""
|
| 25 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 26 |
-
translated = translation_model.generate(**inputs)
|
| 27 |
-
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|