SandaAbhishekSagar
commited on
Commit
·
ccc8077
1
Parent(s):
d69d539
revamped code
Browse files- app.py +32 -24
- translate.py +1 -48
app.py
CHANGED
|
@@ -58,34 +58,42 @@
|
|
| 58 |
# if __name__ == "__main__":
|
| 59 |
# interface.launch(share=True)
|
| 60 |
|
|
|
|
| 61 |
import gradio as gr
|
| 62 |
from translate import translate_text, SUPPORTED_LANGUAGES
|
|
|
|
| 63 |
|
| 64 |
-
def chatbot(input_text,
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
# Gradio Interface
|
| 70 |
-
with gr.Blocks() as app:
|
| 71 |
-
gr.Markdown("## LinguaVision - Multilingual Translation Chatbot")
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
choices=list(SUPPORTED_LANGUAGES.keys()),
|
| 76 |
-
label="Select Input Language",
|
| 77 |
-
value="Auto Detect"
|
| 78 |
-
)
|
| 79 |
-
input_box = gr.Textbox(label="Enter Text")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 58 |
# if __name__ == "__main__":
|
| 59 |
# interface.launch(share=True)
|
| 60 |
|
| 61 |
+
|
| 62 |
import gradio as gr
|
| 63 |
from translate import translate_text, SUPPORTED_LANGUAGES
|
| 64 |
+
from image_generator import generate_image
|
| 65 |
|
| 66 |
+
def chatbot(input_text, src_lang):
|
| 67 |
+
"""Process user input, translate it, and generate an image."""
|
| 68 |
+
# Get the language code from the selected language
|
| 69 |
+
src_lang_code = SUPPORTED_LANGUAGES[src_lang]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# Translate input to English
|
| 72 |
+
translated_text = translate_text(input_text, src_lang_code, tgt_lang_code="en_XX")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
# Generate an image based on the translated text
|
| 75 |
+
image_path = generate_image(f"A scene depicting: {translated_text}")
|
| 76 |
|
| 77 |
+
return translated_text, image_path
|
| 78 |
+
|
| 79 |
+
# Gradio Interface
|
| 80 |
+
interface = gr.Interface(
|
| 81 |
+
fn=chatbot,
|
| 82 |
+
inputs=[
|
| 83 |
+
gr.Textbox(label="Enter text"),
|
| 84 |
+
gr.Dropdown(
|
| 85 |
+
label="Select Input Language",
|
| 86 |
+
choices=list(SUPPORTED_LANGUAGES.keys()),
|
| 87 |
+
value="English",
|
| 88 |
+
),
|
| 89 |
+
],
|
| 90 |
+
outputs=[
|
| 91 |
+
gr.Textbox(label="Translated Text"),
|
| 92 |
+
gr.Image(label="Generated Image"),
|
| 93 |
+
],
|
| 94 |
+
title="LinguaVision - Multilingual Chatbot with Image Generation",
|
| 95 |
+
description="Enter text and select the input language to translate it into English and generate an image based on the text.\n NOTE: This tool takes approximately 20 minutes to execute.",
|
| 96 |
+
)
|
| 97 |
|
| 98 |
+
if __name__ == "__main__":
|
| 99 |
+
interface.launch()
|
translate.py
CHANGED
|
@@ -13,20 +13,6 @@
|
|
| 13 |
# print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en"))
|
| 14 |
|
| 15 |
|
| 16 |
-
# from transformers import MarianMTModel, MarianTokenizer
|
| 17 |
-
|
| 18 |
-
# # Preload the translation model globally
|
| 19 |
-
# model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
| 20 |
-
# tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 21 |
-
# translation_model = MarianMTModel.from_pretrained(model_name)
|
| 22 |
-
|
| 23 |
-
# def translate_text(text, src_lang="auto", tgt_lang="en"):
|
| 24 |
-
# """Translate text from any language to English."""
|
| 25 |
-
# inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 26 |
-
# translated = translation_model.generate(**inputs)
|
| 27 |
-
# return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 28 |
-
|
| 29 |
-
import spaces
|
| 30 |
from transformers import MarianMTModel, MarianTokenizer
|
| 31 |
|
| 32 |
# Preload the translation model globally
|
|
@@ -34,41 +20,8 @@ model_name = "Helsinki-NLP/opus-mt-mul-en"
|
|
| 34 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 35 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 36 |
|
| 37 |
-
# Supported languages for the dropdown
|
| 38 |
-
SUPPORTED_LANGUAGES = {
|
| 39 |
-
"Auto Detect": "auto",
|
| 40 |
-
"English": "en",
|
| 41 |
-
"Spanish": "es",
|
| 42 |
-
"French": "fr",
|
| 43 |
-
"German": "de",
|
| 44 |
-
"Italian": "it",
|
| 45 |
-
"Japanese": "ja",
|
| 46 |
-
"Chinese": "zh",
|
| 47 |
-
"Korean": "ko",
|
| 48 |
-
"Hindi": "hi",
|
| 49 |
-
"Arabic": "ar",
|
| 50 |
-
"Russian": "ru",
|
| 51 |
-
"Portuguese": "pt",
|
| 52 |
-
"Dutch": "nl",
|
| 53 |
-
"Bengali": "bn",
|
| 54 |
-
"Turkish": "tr",
|
| 55 |
-
"Vietnamese": "vi",
|
| 56 |
-
"Indonesian": "id",
|
| 57 |
-
"Malay": "ms",
|
| 58 |
-
}
|
| 59 |
-
@spaces.GPU
|
| 60 |
def translate_text(text, src_lang="auto", tgt_lang="en"):
|
| 61 |
-
"""Translate text from
|
| 62 |
-
# Add language prefix for the source language
|
| 63 |
-
if src_lang != "auto":
|
| 64 |
-
text = f">>{src_lang}<< {text}"
|
| 65 |
-
|
| 66 |
-
# Tokenize the input text
|
| 67 |
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 68 |
-
|
| 69 |
-
# Perform translation
|
| 70 |
translated = translation_model.generate(**inputs)
|
| 71 |
-
|
| 72 |
-
# Decode and return the translated text
|
| 73 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 74 |
-
|
|
|
|
| 13 |
# print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en"))
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from transformers import MarianMTModel, MarianTokenizer
|
| 17 |
|
| 18 |
# Preload the translation model globally
|
|
|
|
| 20 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 21 |
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def translate_text(text, src_lang="auto", tgt_lang="en"):
|
| 24 |
+
"""Translate text from any language to English."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
| 26 |
translated = translation_model.generate(**inputs)
|
|
|
|
|
|
|
| 27 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
|
|