SandaAbhishekSagar
commited on
Commit
路
e8e9699
1
Parent(s):
378e05f
changed the whole code
Browse files- app.py +38 -5
- image_generator.py +31 -12
- translate.py +23 -9
app.py
CHANGED
|
@@ -1,25 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from translate import translate_text
|
| 3 |
from image_generator import generate_image
|
| 4 |
|
| 5 |
def chatbot(input_text, src_lang="auto"):
|
|
|
|
| 6 |
# Translate input to English
|
| 7 |
translated_text = translate_text(input_text, src_lang, "en")
|
| 8 |
-
|
|
|
|
| 9 |
image_path = generate_image(f"A scene depicting: {translated_text}")
|
|
|
|
| 10 |
return translated_text, image_path
|
| 11 |
|
|
|
|
| 12 |
interface = gr.Interface(
|
| 13 |
fn=chatbot,
|
| 14 |
inputs=[
|
| 15 |
-
gr.Textbox(label="
|
| 16 |
-
gr.
|
| 17 |
],
|
| 18 |
outputs=[
|
| 19 |
gr.Textbox(label="Translated Text"),
|
| 20 |
-
gr.Image(label="Generated Image")
|
| 21 |
],
|
| 22 |
-
title="
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# from translate import translate_text
|
| 3 |
+
# from image_generator import generate_image
|
| 4 |
+
|
| 5 |
+
# def chatbot(input_text, src_lang="auto"):
|
| 6 |
+
# # Translate input to English
|
| 7 |
+
# translated_text = translate_text(input_text, src_lang, "en")
|
| 8 |
+
# # Generate image based on translated text
|
| 9 |
+
# image_path = generate_image(f"A scene depicting: {translated_text}")
|
| 10 |
+
# return translated_text, image_path
|
| 11 |
+
|
| 12 |
+
# interface = gr.Interface(
|
| 13 |
+
# fn=chatbot,
|
| 14 |
+
# inputs=[
|
| 15 |
+
# gr.Textbox(label="Input Text"),
|
| 16 |
+
# gr.Dropdown(choices=["auto", "es", "fr", "de"], label="Source Language")
|
| 17 |
+
# ],
|
| 18 |
+
# outputs=[
|
| 19 |
+
# gr.Textbox(label="Translated Text"),
|
| 20 |
+
# gr.Image(label="Generated Image")
|
| 21 |
+
# ],
|
| 22 |
+
# title="English Language Learning Chatbot"
|
| 23 |
+
# )
|
| 24 |
+
|
| 25 |
+
# if __name__ == "__main__":
|
| 26 |
+
# interface.launch()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
import gradio as gr
|
| 30 |
from translate import translate_text
|
| 31 |
from image_generator import generate_image
|
| 32 |
|
| 33 |
def chatbot(input_text, src_lang="auto"):
|
| 34 |
+
"""Process user input, translate it, and generate an image."""
|
| 35 |
# Translate input to English
|
| 36 |
translated_text = translate_text(input_text, src_lang, "en")
|
| 37 |
+
|
| 38 |
+
# Generate an image based on the translated text
|
| 39 |
image_path = generate_image(f"A scene depicting: {translated_text}")
|
| 40 |
+
|
| 41 |
return translated_text, image_path
|
| 42 |
|
| 43 |
+
# Gradio Interface
|
| 44 |
interface = gr.Interface(
|
| 45 |
fn=chatbot,
|
| 46 |
inputs=[
|
| 47 |
+
gr.Textbox(label="Enter text in any language"),
|
| 48 |
+
gr.Textbox(label="Source Language (optional, e.g., 'es' for Spanish)", value="auto"),
|
| 49 |
],
|
| 50 |
outputs=[
|
| 51 |
gr.Textbox(label="Translated Text"),
|
| 52 |
+
gr.Image(label="Generated Image"),
|
| 53 |
],
|
| 54 |
+
title="Multilingual Chatbot with Image Generation",
|
| 55 |
+
description="Enter text in any language to translate it into English and generate an image based on the text.",
|
| 56 |
)
|
| 57 |
|
| 58 |
if __name__ == "__main__":
|
image_generator.py
CHANGED
|
@@ -12,20 +12,39 @@
|
|
| 12 |
# print("Generated Image Path:", generate_image(prompt))
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from diffusers import StableDiffusionPipeline
|
| 16 |
import torch
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def generate_image(prompt):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Use GPU if available, otherwise fallback to CPU
|
| 22 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
-
model.to(device)
|
| 24 |
-
|
| 25 |
image = model(prompt).images[0]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
if __name__ == "__main__":
|
| 30 |
-
prompt = "A friendly person saying 'How are you?'"
|
| 31 |
-
print("Generated Image Path:", generate_image(prompt))
|
|
|
|
| 12 |
# print("Generated Image Path:", generate_image(prompt))
|
| 13 |
|
| 14 |
|
| 15 |
+
# from diffusers import StableDiffusionPipeline
|
| 16 |
+
# import torch
|
| 17 |
+
|
| 18 |
+
# def generate_image(prompt):
|
| 19 |
+
# model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
| 20 |
+
|
| 21 |
+
# # Use GPU if available, otherwise fallback to CPU
|
| 22 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
# model.to(device)
|
| 24 |
+
|
| 25 |
+
# image = model(prompt).images[0]
|
| 26 |
+
# image.save("output.png")
|
| 27 |
+
# return "output.png"
|
| 28 |
+
|
| 29 |
+
# if __name__ == "__main__":
|
| 30 |
+
# prompt = "A friendly person saying 'How are you?'"
|
| 31 |
+
# print("Generated Image Path:", generate_image(prompt))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
from diffusers import StableDiffusionPipeline
|
| 35 |
import torch
|
| 36 |
|
| 37 |
+
# Preload the model globally
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
model = StableDiffusionPipeline.from_pretrained(
|
| 40 |
+
"stabilityai/stable-diffusion-2-1-base",
|
| 41 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 42 |
+
)
|
| 43 |
+
model.to(device)
|
| 44 |
+
|
| 45 |
def generate_image(prompt):
|
| 46 |
+
"""Generate an image from a text prompt."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
image = model(prompt).images[0]
|
| 48 |
+
output_path = "output.png"
|
| 49 |
+
image.save(output_path)
|
| 50 |
+
return output_path
|
|
|
|
|
|
|
|
|
translate.py
CHANGED
|
@@ -1,13 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import MarianMTModel, MarianTokenizer
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 8 |
-
translated =
|
| 9 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 10 |
-
|
| 11 |
-
if __name__ == "__main__":
|
| 12 |
-
input_text = "驴C贸mo est谩s?"
|
| 13 |
-
print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en"))
|
|
|
|
| 1 |
+
# from transformers import MarianMTModel, MarianTokenizer
|
| 2 |
+
|
| 3 |
+
# def translate_text(text, src_lang="es", tgt_lang="en"):
|
| 4 |
+
# model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
| 5 |
+
# tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 6 |
+
# model = MarianMTModel.from_pretrained(model_name)
|
| 7 |
+
# inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 8 |
+
# translated = model.generate(**inputs)
|
| 9 |
+
# return tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 10 |
+
|
| 11 |
+
# if __name__ == "__main__":
|
| 12 |
+
# input_text = "驴C贸mo est谩s?"
|
| 13 |
+
# print("Translated Text:", translate_text(input_text, src_lang="es", tgt_lang="en"))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
from transformers import MarianMTModel, MarianTokenizer
|
| 17 |
|
| 18 |
+
# Preload the translation model globally
|
| 19 |
+
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
| 20 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 21 |
+
translation_model = MarianMTModel.from_pretrained(model_name)
|
| 22 |
+
|
| 23 |
+
def translate_text(text, src_lang="auto", tgt_lang="en"):
|
| 24 |
+
"""Translate text from any language to English."""
|
| 25 |
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 26 |
+
translated = translation_model.generate(**inputs)
|
| 27 |
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|