# from diffusers import StableDiffusionPipeline # def generate_image(prompt): # model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") # model.to("cuda") # Use GPU for faster generation # image = model(prompt).images[0] # image.save("output.png") # return "output.png" # if __name__ == "__main__": # prompt = "A friendly person saying 'How are you?'" # print("Generated Image Path:", generate_image(prompt)) # from diffusers import StableDiffusionPipeline # import torch # def generate_image(prompt): # model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") # # Use GPU if available, otherwise fallback to CPU # device = "cuda" if torch.cuda.is_available() else "cpu" # model.to(device) # image = model(prompt).images[0] # image.save("output.png") # return "output.png" # if __name__ == "__main__": # prompt = "A friendly person saying 'How are you?'" # print("Generated Image Path:", generate_image(prompt)) import spaces from diffusers import StableDiffusionPipeline import torch # Preload the model globally device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1").to(device) @spaces.GPU def generate_image(prompt): """Generate an image based on the input prompt.""" with torch.no_grad(): image = pipeline(prompt).images[0] # Save the image locally and return the file path image_path = "generated_image.png" image.save(image_path) return image_path