Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -303,44 +303,34 @@ class MultimodalRAG:
|
|
| 303 |
except Exception as e:
|
| 304 |
logger.error(f"Error loading template embeddings: {e}")
|
| 305 |
|
| 306 |
-
def
|
| 307 |
-
"""
|
| 308 |
try:
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
except Exception as e:
|
| 315 |
-
logger.error(f"Error
|
|
|
|
| 316 |
|
| 317 |
-
def encode_image(self, image: Image.Image) -> np.ndarray:
|
| 318 |
-
"""Encode image using BLIP"""
|
| 319 |
-
try:
|
| 320 |
-
model, processor = self.model_manager.load_model("image_processor")
|
| 321 |
-
|
| 322 |
-
# Process image
|
| 323 |
-
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 324 |
-
|
| 325 |
-
# Get image features using the proper method
|
| 326 |
-
with torch.no_grad():
|
| 327 |
-
outputs = model.get_image_features(**inputs)
|
| 328 |
-
image_features = outputs.last_hidden_state.mean(dim=1) # Average pooling
|
| 329 |
-
|
| 330 |
-
return image_features.cpu().numpy()
|
| 331 |
-
|
| 332 |
-
except Exception as e:
|
| 333 |
-
logger.error(f"Error encoding image: {str(e)}")
|
| 334 |
-
raise ModelError(f"Error encoding image: {str(e)}")
|
| 335 |
-
|
| 336 |
def encode_text(self, text: str) -> np.ndarray:
|
| 337 |
"""Encode text using sentence-transformers"""
|
| 338 |
-
|
| 339 |
try:
|
| 340 |
return self.text_encoder.encode(text)
|
| 341 |
except Exception as e:
|
| 342 |
raise ModelError(f"Error encoding text: {str(e)}")
|
| 343 |
|
|
|
|
|
|
|
| 344 |
def generate_code(self, description: str, template_code: str) -> str:
|
| 345 |
"""Generate code using StarCoder"""
|
| 346 |
try:
|
|
|
|
| 303 |
except Exception as e:
|
| 304 |
logger.error(f"Error loading template embeddings: {e}")
|
| 305 |
|
| 306 |
+
def encode_image(self, image: Image.Image) -> np.ndarray:
|
| 307 |
+
"""Encode image using BLIP"""
|
| 308 |
try:
|
| 309 |
+
model, processor = self.model_manager.load_model("image_processor")
|
| 310 |
+
|
| 311 |
+
# Process image
|
| 312 |
+
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 313 |
+
|
| 314 |
+
# Get image features using the proper method
|
| 315 |
+
with torch.no_grad():
|
| 316 |
+
outputs = model.get_image_features(**inputs)
|
| 317 |
+
image_features = outputs.last_hidden_state.mean(dim=1) # Average pooling
|
| 318 |
+
|
| 319 |
+
return image_features.cpu().numpy()
|
| 320 |
+
|
| 321 |
except Exception as e:
|
| 322 |
+
logger.error(f"Error encoding image: {str(e)}")
|
| 323 |
+
raise ModelError(f"Error encoding image: {str(e)}")
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
def encode_text(self, text: str) -> np.ndarray:
|
| 326 |
"""Encode text using sentence-transformers"""
|
|
|
|
| 327 |
try:
|
| 328 |
return self.text_encoder.encode(text)
|
| 329 |
except Exception as e:
|
| 330 |
raise ModelError(f"Error encoding text: {str(e)}")
|
| 331 |
|
| 332 |
+
# ... rest of the MultimodalRAG class methods ...
|
| 333 |
+
|
| 334 |
def generate_code(self, description: str, template_code: str) -> str:
|
| 335 |
"""Generate code using StarCoder"""
|
| 336 |
try:
|