Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,13 +5,11 @@ import time
|
|
| 5 |
from typing import Dict, List, Tuple
|
| 6 |
from datetime import datetime
|
| 7 |
import logging
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 10 |
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
|
| 11 |
from IPython.display import display, HTML
|
| 12 |
-
import streamlit.components.v1 as components
|
| 13 |
-
import tempfile
|
| 14 |
-
import shutil
|
| 15 |
|
| 16 |
# --- Configuration ---
|
| 17 |
VERBOSE = True
|
|
@@ -33,12 +31,56 @@ logging.basicConfig(
|
|
| 33 |
current_model = None # Store the currently loaded model
|
| 34 |
repo = None # Store the Hugging Face Repository object
|
| 35 |
model_descriptions = {} # Store model descriptions
|
| 36 |
-
project_path = DEFAULT_PROJECT_PATH # Default project path
|
| 37 |
|
| 38 |
# --- Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
| 40 |
|
| 41 |
-
def
|
| 42 |
"""Loads a language model and fetches its description."""
|
| 43 |
global current_model, model_descriptions
|
| 44 |
try:
|
|
@@ -47,8 +89,9 @@ def load_model(model_name: str):
|
|
| 47 |
"text-generation",
|
| 48 |
model=model_name,
|
| 49 |
tokenizer=tokenizer,
|
| 50 |
-
model_kwargs={"load_in_8bit": True}
|
| 51 |
)
|
|
|
|
| 52 |
# Fetch and store the model description
|
| 53 |
api = HfApi()
|
| 54 |
model_info = api.model_info(model_name)
|
|
@@ -57,52 +100,43 @@ def load_model(model_name: str):
|
|
| 57 |
except Exception as e:
|
| 58 |
return f"Error loading model: {str(e)}"
|
| 59 |
|
| 60 |
-
|
| 61 |
-
def run_command(command: str, project_path: str = None) -> str:
|
| 62 |
"""Executes a shell command and returns the output."""
|
| 63 |
try:
|
| 64 |
if project_path:
|
| 65 |
-
process = subprocess.Popen(
|
| 66 |
-
command,
|
| 67 |
-
shell=True,
|
| 68 |
-
cwd=project_path,
|
| 69 |
-
stdout=subprocess.PIPE,
|
| 70 |
-
stderr=subprocess.PIPE,
|
| 71 |
-
)
|
| 72 |
else:
|
| 73 |
-
process = subprocess.Popen(
|
| 74 |
-
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
|
| 75 |
-
)
|
| 76 |
output, error = process.communicate()
|
| 77 |
if error:
|
| 78 |
-
return f"
|
| 79 |
return output.decode("utf-8")
|
| 80 |
except Exception as e:
|
| 81 |
-
return f"
|
| 82 |
-
|
| 83 |
|
| 84 |
-
def
|
| 85 |
"""Creates a new Hugging Face project."""
|
| 86 |
-
global repo
|
| 87 |
try:
|
| 88 |
if os.path.exists(project_path):
|
| 89 |
-
return f"
|
| 90 |
# Create the repository
|
| 91 |
repo = Repository(local_dir=project_path, clone_from=None)
|
| 92 |
repo.git_init()
|
| 93 |
-
|
|
|
|
| 94 |
with open(os.path.join(project_path, "README.md"), "w") as f:
|
| 95 |
-
f.write(f"{project_name}\n\nA new Hugging Face project.")
|
|
|
|
| 96 |
# Stage all changes
|
| 97 |
repo.git_add(pattern="*")
|
| 98 |
repo.git_commit(commit_message="Initial commit")
|
| 99 |
-
project_path = os.path.join(project_path, project_name) # Update project path
|
| 100 |
-
return f"""Hugging Face project '{project_name}' created successfully at '{project_path}'"""
|
| 101 |
-
except Exception as e:
|
| 102 |
-
return f"""Error creating Hugging Face project: {str(e)}"""
|
| 103 |
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
def
|
| 106 |
"""Lists files in the project directory."""
|
| 107 |
try:
|
| 108 |
files = os.listdir(project_path)
|
|
@@ -110,10 +144,9 @@ def list_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
|
| 110 |
return "Project directory is empty."
|
| 111 |
return "\n".join(files)
|
| 112 |
except Exception as e:
|
| 113 |
-
return f"
|
| 114 |
-
|
| 115 |
|
| 116 |
-
def
|
| 117 |
"""Reads and returns the content of a file in the project."""
|
| 118 |
try:
|
| 119 |
full_path = os.path.join(project_path, file_path)
|
|
@@ -121,21 +154,19 @@ def read_file(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
|
| 121 |
content = f.read()
|
| 122 |
return content
|
| 123 |
except Exception as e:
|
| 124 |
-
return f"
|
| 125 |
|
| 126 |
-
|
| 127 |
-
def write_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH):
|
| 128 |
"""Writes content to a file in the project."""
|
| 129 |
try:
|
| 130 |
full_path = os.path.join(project_path, file_path)
|
| 131 |
with open(full_path, "w") as f:
|
| 132 |
f.write(content)
|
| 133 |
-
return f"Successfully wrote to '{
|
| 134 |
except Exception as e:
|
| 135 |
-
return f"
|
| 136 |
-
|
| 137 |
|
| 138 |
-
def
|
| 139 |
"""Provides a preview of the project, if applicable."""
|
| 140 |
# Assuming a simple HTML preview for now
|
| 141 |
try:
|
|
@@ -148,140 +179,19 @@ def preview(project_path: str = DEFAULT_PROJECT_PATH):
|
|
| 148 |
else:
|
| 149 |
return "No 'index.html' found for preview."
|
| 150 |
except Exception as e:
|
| 151 |
-
return f"
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def generate_response(
|
| 155 |
-
message: str,
|
| 156 |
-
history: List[Tuple[str, str]],
|
| 157 |
-
agent_name: str,
|
| 158 |
-
sys_prompt: str,
|
| 159 |
-
temperature: float,
|
| 160 |
-
max_new_tokens: int,
|
| 161 |
-
top_p: float,
|
| 162 |
-
repetition_penalty: float,
|
| 163 |
-
) -> str:
|
| 164 |
-
"""Generates a response using the loaded model."""
|
| 165 |
-
if not current_model:
|
| 166 |
-
return "Please load a model first."
|
| 167 |
-
conversation = [{"role": "system", "content": sys_prompt}]
|
| 168 |
-
for message, response in history:
|
| 169 |
-
conversation.append({"role": "user", "content": message})
|
| 170 |
-
conversation.append({"role": "assistant", "content": response})
|
| 171 |
-
conversation.append({"role": "user", "content": message})
|
| 172 |
-
response = current_model.generate(
|
| 173 |
-
conversation,
|
| 174 |
-
max_new_tokens=max_new_tokens,
|
| 175 |
-
temperature=temperature,
|
| 176 |
-
top_p=top_p,
|
| 177 |
-
repetition_penalty=repetition_penalty,
|
| 178 |
-
)
|
| 179 |
-
return response.text.strip()
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
def run_chat(
|
| 183 |
-
purpose: str,
|
| 184 |
-
message: str,
|
| 185 |
-
agent_name: str,
|
| 186 |
-
sys_prompt: str,
|
| 187 |
-
temperature: float,
|
| 188 |
-
max_new_tokens: int,
|
| 189 |
-
top_p: float,
|
| 190 |
-
repetition_penalty: float,
|
| 191 |
-
history: List[Tuple[str, str]],
|
| 192 |
-
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 193 |
-
"""Handles the chat interaction."""
|
| 194 |
-
if not current_model:
|
| 195 |
-
return [(history, history), "Please load a model first."]
|
| 196 |
-
response = generate_response(
|
| 197 |
-
message,
|
| 198 |
-
history,
|
| 199 |
-
agent_name,
|
| 200 |
-
sys_prompt,
|
| 201 |
-
temperature,
|
| 202 |
-
max_new_tokens,
|
| 203 |
-
top_p,
|
| 204 |
-
repetition_penalty,
|
| 205 |
-
)
|
| 206 |
-
history.append((message, response))
|
| 207 |
-
return [(history, history), response]
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
def update_model_dropdown(category):
|
| 211 |
-
"""Populates the model dropdown based on the selected category."""
|
| 212 |
-
models = []
|
| 213 |
-
api = HfApi()
|
| 214 |
-
for model in api.list_models():
|
| 215 |
-
if model.pipeline_tag == category:
|
| 216 |
-
models.append(model.modelId)
|
| 217 |
-
return gr.Dropdown.update(choices=models)
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def display_model_description(model_name):
|
| 221 |
-
"""Displays the description of the selected model."""
|
| 222 |
-
global model_descriptions
|
| 223 |
-
if model_name in model_descriptions:
|
| 224 |
-
return model_descriptions[model_name]
|
| 225 |
-
else:
|
| 226 |
-
return "Model description not available."
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def load_selected_model(model_name):
|
| 230 |
-
"""Loads the selected model."""
|
| 231 |
-
global current_model
|
| 232 |
-
load_output = load_model(model_name)
|
| 233 |
-
if current_model:
|
| 234 |
-
return f"""Model '{model_name}' loaded successfully!"""
|
| 235 |
-
else:
|
| 236 |
-
return f"""Error loading model '{model_name}'"""
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
def create_project_handler(project_name):
|
| 240 |
-
"""Handles the creation of a new project."""
|
| 241 |
-
return create_project(project_name)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
def list_files_handler():
|
| 245 |
-
"""Handles the listing of files in the project directory."""
|
| 246 |
-
return list_files(project_path)
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
def read_file_handler(file_path):
|
| 250 |
-
"""Handles the reading of a file in the project."""
|
| 251 |
-
return read_file(file_path, project_path)
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
def write_file_handler(file_path, file_content):
|
| 255 |
-
"""Handles the writing of content to a file in the project."""
|
| 256 |
-
return write_file(file_path, file_content, project_path)
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
def run_command_handler(command):
|
| 260 |
-
"""Handles the execution of a shell command."""
|
| 261 |
-
return run_command(command, project_path)
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
def preview_handler():
|
| 265 |
-
"""Handles the preview of the project."""
|
| 266 |
-
return preview(project_path)
|
| 267 |
-
|
| 268 |
|
| 269 |
def main():
|
| 270 |
-
"""Main function to launch the Gradio interface."""
|
| 271 |
with gr.Blocks() as demo:
|
| 272 |
-
gr.Markdown("##
|
|
|
|
| 273 |
# --- Model Selection ---
|
| 274 |
with gr.Tab("Model"):
|
|
|
|
| 275 |
model_categories = gr.Dropdown(
|
| 276 |
-
choices=[
|
| 277 |
-
"Text Generation",
|
| 278 |
-
"Text Summarization",
|
| 279 |
-
"Code Generation",
|
| 280 |
-
"Translation",
|
| 281 |
-
"Question Answering",
|
| 282 |
-
],
|
| 283 |
label="Model Category",
|
| 284 |
-
value="Text Generation"
|
| 285 |
)
|
| 286 |
model_name = gr.Dropdown(
|
| 287 |
choices=[], # Initially empty, will be populated based on category
|
|
@@ -291,142 +201,80 @@ def main():
|
|
| 291 |
load_output = gr.Textbox(label="Output")
|
| 292 |
model_description = gr.Markdown(label="Model Description")
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
model_categories.change(
|
| 295 |
-
fn=update_model_dropdown,
|
|
|
|
|
|
|
| 296 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
model_name.change(
|
| 298 |
-
fn=display_model_description,
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
load_selected_model, inputs=model_name, outputs=load_output
|
| 302 |
)
|
| 303 |
|
|
|
|
|
|
|
| 304 |
# --- Chat Interface ---
|
| 305 |
with gr.Tab("Chat"):
|
| 306 |
-
chatbot = gr.Chatbot(
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
)
|
| 315 |
-
purpose = gr.Textbox(
|
| 316 |
-
label="Purpose", placeholder="What is the purpose of this interaction?"
|
| 317 |
-
)
|
| 318 |
-
agent_name = gr.Textbox(
|
| 319 |
-
label="Agent Name", value="Generic Agent", interactive=True
|
| 320 |
-
)
|
| 321 |
-
sys_prompt = gr.Textbox(
|
| 322 |
-
label="System Prompt", max_lines=1, interactive=True
|
| 323 |
-
)
|
| 324 |
-
temperature = gr.Slider(
|
| 325 |
-
label="Temperature",
|
| 326 |
-
value=TEMPERATURE,
|
| 327 |
-
minimum=0.0,
|
| 328 |
-
maximum=1.0,
|
| 329 |
-
step=0.05,
|
| 330 |
-
interactive=True,
|
| 331 |
-
info="Higher values produce more creative text.",
|
| 332 |
-
)
|
| 333 |
-
max_new_tokens = gr.Slider(
|
| 334 |
-
label="Max new tokens",
|
| 335 |
-
value=MAX_TOKENS,
|
| 336 |
-
minimum=0,
|
| 337 |
-
maximum=1048 * 10,
|
| 338 |
-
step=64,
|
| 339 |
-
interactive=True,
|
| 340 |
-
info="The maximum number of new tokens to generate.",
|
| 341 |
-
)
|
| 342 |
-
top_p = gr.Slider(
|
| 343 |
-
label="Top-p (nucleus sampling)",
|
| 344 |
-
value=TOP_P,
|
| 345 |
-
minimum=0,
|
| 346 |
-
maximum=1,
|
| 347 |
-
step=0.05,
|
| 348 |
-
interactive=True,
|
| 349 |
-
info="Higher values sample more low-probability tokens.",
|
| 350 |
-
)
|
| 351 |
-
repetition_penalty = gr.Slider(
|
| 352 |
-
label="Repetition penalty",
|
| 353 |
-
value=REPETITION_PENALTY,
|
| 354 |
-
minimum=1.0,
|
| 355 |
-
maximum=2.0,
|
| 356 |
-
step=0.05,
|
| 357 |
-
interactive=True,
|
| 358 |
-
info="Penalize repeated tokens.",
|
| 359 |
-
)
|
| 360 |
submit_button = gr.Button(value="Send")
|
| 361 |
history = gr.State([])
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
temperature,
|
| 370 |
-
max_new_tokens,
|
| 371 |
-
top_p,
|
| 372 |
-
repetition_penalty,
|
| 373 |
-
history,
|
| 374 |
-
],
|
| 375 |
-
outputs=[chatbot, history],
|
| 376 |
-
)
|
| 377 |
|
| 378 |
# --- Project Management ---
|
| 379 |
with gr.Tab("Project"):
|
| 380 |
-
project_name = gr.Textbox(label="Project Name")
|
| 381 |
-
create_project_button = gr.Button("Create Project")
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
write_file_button = gr.Button("Write File")
|
| 390 |
-
write_file_output = gr.Textbox(label="Output")
|
| 391 |
-
run_command_input = gr.Textbox(label="Command")
|
| 392 |
run_command_button = gr.Button("Run Command")
|
| 393 |
-
|
| 394 |
-
preview_button = gr.Button("Preview")
|
| 395 |
-
preview_output = gr.Textbox(label="Output")
|
| 396 |
|
| 397 |
-
create_project_button.click(
|
| 398 |
-
|
| 399 |
-
)
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
)
|
| 403 |
-
read_file_button.click(
|
| 404 |
-
read_file_handler, inputs=file_path, outputs=read_file_output
|
| 405 |
-
)
|
| 406 |
-
write_file_button.click(
|
| 407 |
-
write_file_handler,
|
| 408 |
-
inputs=[file_path, file_content],
|
| 409 |
-
outputs=write_file_output,
|
| 410 |
-
)
|
| 411 |
-
run_command_button.click(
|
| 412 |
-
run_command_handler, inputs=run_command_input, outputs=run_command_output
|
| 413 |
-
)
|
| 414 |
-
preview_button.click(
|
| 415 |
-
preview_handler, outputs=preview_output
|
| 416 |
-
)
|
| 417 |
|
| 418 |
-
|
| 419 |
-
server_name = "0.0.0.0" # Listen on available network interfaces
|
| 420 |
-
server_port = 7860 # Choose an available port
|
| 421 |
-
share_gradio_link = True # Share a public URL for the app
|
| 422 |
-
|
| 423 |
-
# --- Launch the Interface ---
|
| 424 |
-
demo.launch(
|
| 425 |
-
server_name=server_name,
|
| 426 |
-
server_port=server_port,
|
| 427 |
-
share=share_gradio_link,
|
| 428 |
-
)
|
| 429 |
|
| 430 |
-
gr.load("models/mistralai/Mistral-Large-Instruct-2407").launch()
|
| 431 |
if __name__ == "__main__":
|
| 432 |
-
main()
|
|
|
|
| 5 |
from typing import Dict, List, Tuple
|
| 6 |
from datetime import datetime
|
| 7 |
import logging
|
| 8 |
+
|
| 9 |
import gradio as gr
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 11 |
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
|
| 12 |
from IPython.display import display, HTML
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# --- Configuration ---
|
| 15 |
VERBOSE = True
|
|
|
|
| 31 |
current_model = None # Store the currently loaded model
|
| 32 |
repo = None # Store the Hugging Face Repository object
|
| 33 |
model_descriptions = {} # Store model descriptions
|
|
|
|
| 34 |
|
| 35 |
# --- Functions ---
|
| 36 |
+
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
|
| 37 |
+
prompt = ""
|
| 38 |
+
for user_prompt, bot_response in history[-max_history_turns:]:
|
| 39 |
+
prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
|
| 40 |
+
prompt += f"Human: {message}\nAssistant:"
|
| 41 |
+
return prompt
|
| 42 |
+
|
| 43 |
+
def generate_response(
|
| 44 |
+
prompt: str,
|
| 45 |
+
history: List[Tuple[str, str]],
|
| 46 |
+
agent_name: str = "Generic Agent",
|
| 47 |
+
sys_prompt: str = "",
|
| 48 |
+
temperature: float = TEMPERATURE,
|
| 49 |
+
max_new_tokens: int = MAX_TOKENS,
|
| 50 |
+
top_p: float = TOP_P,
|
| 51 |
+
repetition_penalty: float = REPETITION_PENALTY,
|
| 52 |
+
) -> str:
|
| 53 |
+
global current_model
|
| 54 |
+
if current_model is None:
|
| 55 |
+
return "Error: Please load a model first."
|
| 56 |
+
|
| 57 |
+
date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 58 |
+
full_prompt = PREFIX.format(
|
| 59 |
+
date_time_str=date_time_str,
|
| 60 |
+
purpose=sys_prompt,
|
| 61 |
+
agent_name=agent_name
|
| 62 |
+
) + format_prompt(prompt, history)
|
| 63 |
+
|
| 64 |
+
if VERBOSE:
|
| 65 |
+
logging.info(LOG_PROMPT.format(content=full_prompt))
|
| 66 |
+
|
| 67 |
+
response = current_model(
|
| 68 |
+
full_prompt,
|
| 69 |
+
max_new_tokens=max_new_tokens,
|
| 70 |
+
temperature=temperature,
|
| 71 |
+
top_p=top_p,
|
| 72 |
+
repetition_penalty=repetition_penalty,
|
| 73 |
+
do_sample=True
|
| 74 |
+
)[0]['generated_text']
|
| 75 |
+
|
| 76 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
| 77 |
+
|
| 78 |
+
if VERBOSE:
|
| 79 |
+
logging.info(LOG_RESPONSE.format(resp=assistant_response))
|
| 80 |
|
| 81 |
+
return assistant_response
|
| 82 |
|
| 83 |
+
def load_hf_model(model_name: str):
|
| 84 |
"""Loads a language model and fetches its description."""
|
| 85 |
global current_model, model_descriptions
|
| 86 |
try:
|
|
|
|
| 89 |
"text-generation",
|
| 90 |
model=model_name,
|
| 91 |
tokenizer=tokenizer,
|
| 92 |
+
model_kwargs={"load_in_8bit": True}
|
| 93 |
)
|
| 94 |
+
|
| 95 |
# Fetch and store the model description
|
| 96 |
api = HfApi()
|
| 97 |
model_info = api.model_info(model_name)
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
return f"Error loading model: {str(e)}"
|
| 102 |
|
| 103 |
+
def execute_command(command: str, project_path: str = None) -> str:
|
|
|
|
| 104 |
"""Executes a shell command and returns the output."""
|
| 105 |
try:
|
| 106 |
if project_path:
|
| 107 |
+
process = subprocess.Popen(command, shell=True, cwd=project_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
else:
|
| 109 |
+
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
|
|
|
|
|
| 110 |
output, error = process.communicate()
|
| 111 |
if error:
|
| 112 |
+
return f"Error: {error.decode('utf-8')}"
|
| 113 |
return output.decode("utf-8")
|
| 114 |
except Exception as e:
|
| 115 |
+
return f"Error executing command: {str(e)}"
|
|
|
|
| 116 |
|
| 117 |
+
def create_hf_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
|
| 118 |
"""Creates a new Hugging Face project."""
|
| 119 |
+
global repo
|
| 120 |
try:
|
| 121 |
if os.path.exists(project_path):
|
| 122 |
+
return f"Error: Directory '{project_path}' already exists!"
|
| 123 |
# Create the repository
|
| 124 |
repo = Repository(local_dir=project_path, clone_from=None)
|
| 125 |
repo.git_init()
|
| 126 |
+
|
| 127 |
+
# Add basic files (optional, you can customize this)
|
| 128 |
with open(os.path.join(project_path, "README.md"), "w") as f:
|
| 129 |
+
f.write(f"# {project_name}\n\nA new Hugging Face project.")
|
| 130 |
+
|
| 131 |
# Stage all changes
|
| 132 |
repo.git_add(pattern="*")
|
| 133 |
repo.git_commit(commit_message="Initial commit")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
return f"Hugging Face project '{project_name}' created successfully at '{project_path}'"
|
| 136 |
+
except Exception as e:
|
| 137 |
+
return f"Error creating Hugging Face project: {str(e)}"
|
| 138 |
|
| 139 |
+
def list_project_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
| 140 |
"""Lists files in the project directory."""
|
| 141 |
try:
|
| 142 |
files = os.listdir(project_path)
|
|
|
|
| 144 |
return "Project directory is empty."
|
| 145 |
return "\n".join(files)
|
| 146 |
except Exception as e:
|
| 147 |
+
return f"Error listing project files: {str(e)}"
|
|
|
|
| 148 |
|
| 149 |
+
def read_file_content(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
| 150 |
"""Reads and returns the content of a file in the project."""
|
| 151 |
try:
|
| 152 |
full_path = os.path.join(project_path, file_path)
|
|
|
|
| 154 |
content = f.read()
|
| 155 |
return content
|
| 156 |
except Exception as e:
|
| 157 |
+
return f"Error reading file: {str(e)}"
|
| 158 |
|
| 159 |
+
def write_to_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
|
|
|
|
| 160 |
"""Writes content to a file in the project."""
|
| 161 |
try:
|
| 162 |
full_path = os.path.join(project_path, file_path)
|
| 163 |
with open(full_path, "w") as f:
|
| 164 |
f.write(content)
|
| 165 |
+
return f"Successfully wrote to '{file_path}'"
|
| 166 |
except Exception as e:
|
| 167 |
+
return f"Error writing to file: {str(e)}"
|
|
|
|
| 168 |
|
| 169 |
+
def preview_project(project_path: str = DEFAULT_PROJECT_PATH):
|
| 170 |
"""Provides a preview of the project, if applicable."""
|
| 171 |
# Assuming a simple HTML preview for now
|
| 172 |
try:
|
|
|
|
| 179 |
else:
|
| 180 |
return "No 'index.html' found for preview."
|
| 181 |
except Exception as e:
|
| 182 |
+
return f"Error previewing project: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
def main():
|
|
|
|
| 185 |
with gr.Blocks() as demo:
|
| 186 |
+
gr.Markdown("## FragMixt: Your Hugging Face No-Code App Builder")
|
| 187 |
+
|
| 188 |
# --- Model Selection ---
|
| 189 |
with gr.Tab("Model"):
|
| 190 |
+
# --- Model Dropdown with Categories ---
|
| 191 |
model_categories = gr.Dropdown(
|
| 192 |
+
choices=["Text Generation", "Text Summarization", "Code Generation", "Translation", "Question Answering"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
label="Model Category",
|
| 194 |
+
value="Text Generation"
|
| 195 |
)
|
| 196 |
model_name = gr.Dropdown(
|
| 197 |
choices=[], # Initially empty, will be populated based on category
|
|
|
|
| 201 |
load_output = gr.Textbox(label="Output")
|
| 202 |
model_description = gr.Markdown(label="Model Description")
|
| 203 |
|
| 204 |
+
# --- Function to populate model names based on category ---
|
| 205 |
+
def update_model_dropdown(category):
|
| 206 |
+
models = []
|
| 207 |
+
api = HfApi()
|
| 208 |
+
for model in api.list_models():
|
| 209 |
+
if model.pipeline_tag == category:
|
| 210 |
+
models.append(model.modelId)
|
| 211 |
+
return gr.Dropdown.update(choices=models)
|
| 212 |
+
|
| 213 |
+
# --- Event handler for category dropdown ---
|
| 214 |
model_categories.change(
|
| 215 |
+
fn=update_model_dropdown,
|
| 216 |
+
inputs=model_categories,
|
| 217 |
+
outputs=model_name,
|
| 218 |
)
|
| 219 |
+
|
| 220 |
+
# --- Event handler to display model description ---
|
| 221 |
+
def display_model_description(model_name):
|
| 222 |
+
global model_descriptions
|
| 223 |
+
if model_name in model_descriptions:
|
| 224 |
+
return model_descriptions[model_name]
|
| 225 |
+
else:
|
| 226 |
+
return "Model description not available."
|
| 227 |
+
|
| 228 |
model_name.change(
|
| 229 |
+
fn=display_model_description,
|
| 230 |
+
inputs=model_name,
|
| 231 |
+
outputs=model_description,
|
|
|
|
| 232 |
)
|
| 233 |
|
| 234 |
+
load_button.click(load_hf_model, inputs=model_name, outputs=load_output)
|
| 235 |
+
|
| 236 |
# --- Chat Interface ---
|
| 237 |
with gr.Tab("Chat"):
|
| 238 |
+
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True)
|
| 239 |
+
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
|
| 240 |
+
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
|
| 241 |
+
agent_name = gr.Dropdown(label="Agents", choices=["Generic Agent"], value="Generic Agent", interactive=True)
|
| 242 |
+
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
|
| 243 |
+
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
|
| 244 |
+
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
| 245 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
| 246 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
submit_button = gr.Button(value="Send")
|
| 248 |
history = gr.State([])
|
| 249 |
+
|
| 250 |
+
def run_chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 251 |
+
response = generate_response(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
|
| 252 |
+
history.append((message, response))
|
| 253 |
+
return history, history
|
| 254 |
+
|
| 255 |
+
submit_button.click(run_chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
# --- Project Management ---
|
| 258 |
with gr.Tab("Project"):
|
| 259 |
+
project_name = gr.Textbox(label="Project Name", placeholder="MyHuggingFaceApp")
|
| 260 |
+
create_project_button = gr.Button("Create Hugging Face Project")
|
| 261 |
+
project_output = gr.Textbox(label="Output", lines=5)
|
| 262 |
+
file_content = gr.Code(label="File Content", language="python", lines=20)
|
| 263 |
+
file_path = gr.Textbox(label="File Path (relative to project)", placeholder="src/main.py")
|
| 264 |
+
read_button = gr.Button("Read File")
|
| 265 |
+
write_button = gr.Button("Write to File")
|
| 266 |
+
command_input = gr.Textbox(label="Terminal Command", placeholder="pip install -r requirements.txt")
|
| 267 |
+
command_output = gr.Textbox(label="Command Output", lines=5)
|
|
|
|
|
|
|
|
|
|
| 268 |
run_command_button = gr.Button("Run Command")
|
| 269 |
+
preview_button = gr.Button("Preview Project")
|
|
|
|
|
|
|
| 270 |
|
| 271 |
+
create_project_button.click(create_hf_project, inputs=[project_name], outputs=project_output)
|
| 272 |
+
read_button.click(read_file_content, inputs=file_path, outputs=file_content)
|
| 273 |
+
write_button.click(write_to_file, inputs=[file_path, file_content], outputs=project_output)
|
| 274 |
+
run_command_button.click(execute_command, inputs=command_input, outputs=command_output)
|
| 275 |
+
preview_button.click(preview_project, outputs=project_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
|
|
|
| 279 |
if __name__ == "__main__":
|
| 280 |
+
main()
|