Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,82 +1,36 @@
|
|
| 1 |
import os
|
| 2 |
-
import subprocess
|
| 3 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
| 4 |
-
import black
|
| 5 |
-
from pylint import lint
|
| 6 |
-
from io import StringIO
|
| 7 |
import sys
|
| 8 |
-
import
|
| 9 |
-
from huggingface_hub import hf_hub_url, cached_download, HfApi, InferenceClient
|
| 10 |
import base64
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
rag_retriever = pipeline("retrieval-question-answering", model="distilbert-base-nq")
|
| 15 |
-
|
| 16 |
-
st.write("Pipeline created successfully")
|
| 17 |
-
|
| 18 |
-
# Add the new HTML code below
|
| 19 |
-
custom_html = '''
|
| 20 |
-
<div style='position:fixed;bottom:0;left:0;width:100%;'>
|
| 21 |
-
<iframe width="100%" scrolling="no" title="CodeGPT Widget" frameborder="0" allowtransparency sandbox="" allowfullscreen="" data-widget-id="c265505c-e667-4af2-b492-291da888ee7c" src="https://widget.codegpt.co/chat-widget.js"></iframe>
|
| 22 |
-
</div>'''
|
| 23 |
-
|
| 24 |
-
# Update the markdown function to accept custom HTML code
|
| 25 |
-
def markdown_with_custom_html(md, html):
|
| 26 |
-
md_content = md
|
| 27 |
-
if html:
|
| 28 |
-
return f"{md_content}\n\n{html}"
|
| 29 |
-
else:
|
| 30 |
-
return md_content
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
markdown_text = "Compare model responses with me!"
|
| 34 |
-
markdown_with_custom_html(markdown_text, custom_html)
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
hf_token = os.environ.get("HUGGINGFACE_TOKEN")("key")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
AGENT_DIRECTORY = "agents"
|
| 45 |
|
| 46 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
| 47 |
-
if
|
| 48 |
st.session_state.chat_history = []
|
| 49 |
-
if
|
| 50 |
st.session_state.terminal_history = []
|
| 51 |
-
if
|
| 52 |
st.session_state.workspace_projects = {}
|
| 53 |
-
if 'available_agents' not in st.session_state:
|
| 54 |
-
st.session_state.available_agents = []
|
| 55 |
-
if 'current_state' not in st.session_state:
|
| 56 |
-
st.session_state.current_state = {
|
| 57 |
-
'toolbox': {},
|
| 58 |
-
'workspace_chat': {}
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
# List of top downloaded free code-generative models from Hugging Face Hub
|
| 62 |
-
AVAILABLE_CODE_GENERATIVE_MODELS = [
|
| 63 |
-
"bigcode/starcoder", # Popular and powerful
|
| 64 |
-
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
|
| 65 |
-
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
|
| 66 |
-
"google/flan-t5-xl", # Powerful, good for complex tasks
|
| 67 |
-
"facebook/bart-large-cnn", # Good for text-to-code tasks
|
| 68 |
-
]
|
| 69 |
|
| 70 |
# Load pre-trained RAG retriever
|
| 71 |
-
|
| 72 |
|
| 73 |
# Load pre-trained chat model
|
| 74 |
-
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 75 |
|
| 76 |
# Load tokenizer
|
| 77 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 78 |
|
| 79 |
-
def process_input(user_input):
|
| 80 |
# Input pipeline: Tokenize and preprocess user input
|
| 81 |
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
| 82 |
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
|
@@ -98,12 +52,12 @@ def process_input(user_input):
|
|
| 98 |
return refined_response
|
| 99 |
|
| 100 |
class AIAgent:
|
| 101 |
-
def __init__(self, name, description, skills, hf_api=None):
|
| 102 |
self.name = name
|
| 103 |
self.description = description
|
| 104 |
self.skills = skills
|
| 105 |
self._hf_api = hf_api
|
| 106 |
-
self._hf_token = hf_token
|
| 107 |
|
| 108 |
@property
|
| 109 |
def hf_api(self):
|
|
@@ -114,11 +68,10 @@ class AIAgent:
|
|
| 114 |
def has_valid_hf_token(self):
|
| 115 |
return bool(self._hf_token)
|
| 116 |
|
| 117 |
-
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model
|
| 118 |
-
self._hf_token = hf_token
|
| 119 |
# Continuation of previous methods
|
| 120 |
-
summary = "Chat History:\n" + "\n".join(
|
| 121 |
-
summary += "\n\nWorkspace Projects:\n" + "\n".join(
|
| 122 |
|
| 123 |
# Analyze chat history and workspace projects to suggest actions
|
| 124 |
# Example:
|
|
@@ -152,14 +105,16 @@ class AIAgent:
|
|
| 152 |
|
| 153 |
# Generate GUI code for app.py if requested
|
| 154 |
if "create a gui" in summary.lower():
|
| 155 |
-
gui_code = generate_code(
|
|
|
|
| 156 |
with open(app_file, "a") as f:
|
| 157 |
f.write(gui_code)
|
| 158 |
|
| 159 |
# Run the default build process
|
| 160 |
build_command = "pip install -r requirements.txt && python app.py"
|
| 161 |
try:
|
| 162 |
-
result = subprocess.run(
|
|
|
|
| 163 |
st.write(f"Build Output:\n{result.stdout}")
|
| 164 |
if result.stderr:
|
| 165 |
st.error(f"Build Errors:\n{result.stderr}")
|
|
@@ -167,32 +122,16 @@ class AIAgent:
|
|
| 167 |
st.error(f"Build Error: {e}")
|
| 168 |
|
| 169 |
return summary, next_step
|
| 170 |
-
|
| 171 |
-
def deploy_built_space_to_hf(self):
|
| 172 |
-
if not self._hf_api or not self._hf_token:
|
| 173 |
-
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
|
| 174 |
-
|
| 175 |
-
# Assuming you have a function to get the files for your Space
|
| 176 |
-
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
|
| 177 |
-
files = get_built_space_files() # Placeholder - you'll need to define this function
|
| 178 |
-
|
| 179 |
-
# Create the Space
|
| 180 |
-
create_space(self.hf_api, repository_name, "Description", True, files)
|
| 181 |
-
|
| 182 |
-
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
|
| 183 |
-
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
|
| 184 |
-
|
| 185 |
|
| 186 |
-
|
| 187 |
-
def get_built_space_files():
|
| 188 |
# Replace with your logic to gather the files you want to deploy
|
| 189 |
return {
|
| 190 |
"app.py": "# Your Streamlit app code here",
|
| 191 |
-
"requirements.txt": "streamlit\ntransformers"
|
| 192 |
# Add other files as needed
|
| 193 |
}
|
| 194 |
|
| 195 |
-
def save_agent_to_file(agent):
|
| 196 |
"""Saves the agent's prompt to a file."""
|
| 197 |
if not os.path.exists(AGENT_DIRECTORY):
|
| 198 |
os.makedirs(AGENT_DIRECTORY)
|
|
@@ -201,7 +140,7 @@ def save_agent_to_file(agent):
|
|
| 201 |
file.write(agent.create_agent_prompt())
|
| 202 |
st.session_state.available_agents.append(agent.name)
|
| 203 |
|
| 204 |
-
def load_agent_prompt(agent_name):
|
| 205 |
"""Loads an agent prompt from a file."""
|
| 206 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
| 207 |
if os.path.exists(file_path):
|
|
@@ -211,53 +150,39 @@ def load_agent_prompt(agent_name):
|
|
| 211 |
else:
|
| 212 |
return None
|
| 213 |
|
| 214 |
-
def create_agent_from_text(name, text):
|
| 215 |
-
skills = text.split(
|
| 216 |
agent = AIAgent(name, "AI agent created from text input.", skills)
|
| 217 |
save_agent_to_file(agent)
|
| 218 |
return agent.create_agent_prompt()
|
| 219 |
|
| 220 |
-
def chat_interface_with_agent(input_text, agent_name):
|
| 221 |
agent_prompt = load_agent_prompt(agent_name)
|
| 222 |
if agent_prompt is None:
|
| 223 |
return f"Agent {agent_name} not found."
|
| 224 |
|
| 225 |
-
model_name ="
|
| 226 |
try:
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
| 232 |
return f"Error loading model: {e}"
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
| 237 |
-
max_input_length = 900
|
| 238 |
-
if input_ids.shape[1] > max_input_length:
|
| 239 |
-
input_ids = input_ids[:, :max_input_length]
|
| 240 |
-
|
| 241 |
-
outputs = model.generate(
|
| 242 |
-
input_ids, max_new_tokens=1000, num_return_sequences=1, do_sample=True,
|
| 243 |
-
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
| 244 |
-
)
|
| 245 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 246 |
-
return response
|
| 247 |
-
|
| 248 |
-
# Terminal interface
|
| 249 |
-
def terminal_interface(command, project_name=None):
|
| 250 |
if project_name:
|
| 251 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 252 |
if not os.path.exists(project_path):
|
| 253 |
return f"Project {project_name} does not exist."
|
| 254 |
-
result = subprocess.run(
|
|
|
|
| 255 |
else:
|
| 256 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
| 257 |
return result.stdout
|
| 258 |
|
| 259 |
-
|
| 260 |
-
def code_editor_interface(code):
|
| 261 |
try:
|
| 262 |
formatted_code = black.format_str(code, mode=black.FileMode())
|
| 263 |
except black.NothingChanged:
|
|
@@ -275,26 +200,25 @@ def code_editor_interface(code):
|
|
| 275 |
|
| 276 |
return formatted_code, lint_message
|
| 277 |
|
| 278 |
-
|
| 279 |
-
def summarize_text(text):
|
| 280 |
summarizer = pipeline("summarization")
|
| 281 |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
| 282 |
return summary[0]['summary_text']
|
| 283 |
|
| 284 |
-
|
| 285 |
-
def sentiment_analysis(text):
|
| 286 |
analyzer = pipeline("sentiment-analysis")
|
| 287 |
result = analyzer(text)
|
| 288 |
return result[0]['label']
|
| 289 |
|
| 290 |
-
|
| 291 |
-
def translate_code(code, source_language, target_language):
|
| 292 |
# Use a Hugging Face translation model instead of OpenAI
|
| 293 |
-
|
|
|
|
|
|
|
| 294 |
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
| 295 |
return translated_code
|
| 296 |
|
| 297 |
-
def generate_code(code_idea, model_name):
|
| 298 |
"""Generates code using the selected model."""
|
| 299 |
try:
|
| 300 |
generator = pipeline('text-generation', model=model_name)
|
|
@@ -303,15 +227,14 @@ def generate_code(code_idea, model_name):
|
|
| 303 |
except Exception as e:
|
| 304 |
return f"Error generating code: {e}"
|
| 305 |
|
| 306 |
-
def chat_interface(input_text):
|
| 307 |
"""Handles general chat interactions with the user."""
|
| 308 |
# Use a Hugging Face chatbot model or your own logic
|
| 309 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
| 310 |
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
| 311 |
return response
|
| 312 |
|
| 313 |
-
|
| 314 |
-
def workspace_interface(project_name):
|
| 315 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 316 |
if not os.path.exists(project_path):
|
| 317 |
os.makedirs(project_path)
|
|
@@ -320,19 +243,18 @@ def workspace_interface(project_name):
|
|
| 320 |
else:
|
| 321 |
return f"Project '{project_name}' already exists."
|
| 322 |
|
| 323 |
-
|
| 324 |
-
def add_code_to_workspace(project_name, code, file_name):
|
| 325 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 326 |
if not os.path.exists(project_path):
|
| 327 |
return f"Project '{project_name}' does not exist."
|
| 328 |
-
|
| 329 |
file_path = os.path.join(project_path, file_name)
|
| 330 |
with open(file_path, "w") as file:
|
| 331 |
file.write(code)
|
| 332 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 333 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 334 |
|
| 335 |
-
def
|
| 336 |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 337 |
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 338 |
payload = {
|
|
@@ -347,7 +269,7 @@ def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
|
| 347 |
"content": contents,
|
| 348 |
"path": filename,
|
| 349 |
"encoding": "utf-8",
|
| 350 |
-
"mode": "overwrite"
|
| 351 |
}
|
| 352 |
payload["files"].append(data)
|
| 353 |
response = requests.post(url, json=payload, headers=headers)
|
|
@@ -362,10 +284,8 @@ st.title("AI Agent Creator")
|
|
| 362 |
|
| 363 |
# Sidebar navigation
|
| 364 |
st.sidebar.title("Navigation")
|
| 365 |
-
app_mode = st.sidebar.selectbox(
|
| 366 |
-
|
| 367 |
-
# Get Hugging Face token from secrets.toml
|
| 368 |
-
hf_token = st.secrets["huggingface"]
|
| 369 |
|
| 370 |
if app_mode == "AI Agent Creator":
|
| 371 |
# AI Agent Creator
|
|
@@ -396,7 +316,8 @@ elif app_mode == "Tool Box":
|
|
| 396 |
terminal_input = st.text_input("Enter a command:")
|
| 397 |
if st.button("Run"):
|
| 398 |
terminal_output = terminal_interface(terminal_input)
|
| 399 |
-
st.session_state.terminal_history.append(
|
|
|
|
| 400 |
st.code(terminal_output, language="bash")
|
| 401 |
|
| 402 |
# Code Editor Interface
|
|
@@ -425,9 +346,11 @@ elif app_mode == "Tool Box":
|
|
| 425 |
st.subheader("Translate Code")
|
| 426 |
code_to_translate = st.text_area("Enter code to translate:")
|
| 427 |
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
| 428 |
-
target_language = st.text_input(
|
|
|
|
| 429 |
if st.button("Translate Code"):
|
| 430 |
-
translated_code = translate_code(
|
|
|
|
| 431 |
st.code(translated_code, language=target_language.lower())
|
| 432 |
|
| 433 |
# Code Generation
|
|
@@ -440,56 +363,7 @@ elif app_mode == "Tool Box":
|
|
| 440 |
elif app_mode == "Workspace Chat App":
|
| 441 |
# Workspace Chat App
|
| 442 |
st.header("Workspace Chat App")
|
| 443 |
-
def get_built_space_files():
|
| 444 |
-
"""
|
| 445 |
-
Gathers the necessary files for the Hugging Face Space,
|
| 446 |
-
handling different project structures and file types.
|
| 447 |
-
"""
|
| 448 |
-
files = {}
|
| 449 |
-
|
| 450 |
-
# Get the current project name (adjust as needed)
|
| 451 |
-
project_name = st.session_state.get('project_name', 'my_project')
|
| 452 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 453 |
|
| 454 |
-
# Define a list of files/directories to search for
|
| 455 |
-
targets = [
|
| 456 |
-
"app.py",
|
| 457 |
-
"requirements.txt",
|
| 458 |
-
"Dockerfile",
|
| 459 |
-
"docker-compose.yml", # Example YAML file
|
| 460 |
-
"src", # Example subdirectory
|
| 461 |
-
"assets" # Another example subdirectory
|
| 462 |
-
]
|
| 463 |
-
|
| 464 |
-
# Iterate through the targets
|
| 465 |
-
for target in targets:
|
| 466 |
-
target_path = os.path.join(project_path, target)
|
| 467 |
-
|
| 468 |
-
# If the target is a file, add it to the files dictionary
|
| 469 |
-
if os.path.isfile(target_path):
|
| 470 |
-
add_file_to_dictionary(files, target_path)
|
| 471 |
-
|
| 472 |
-
# If the target is a directory, recursively search for files within it
|
| 473 |
-
elif os.path.isdir(target_path):
|
| 474 |
-
for root, _, filenames in os.walk(target_path):
|
| 475 |
-
for filename in filenames:
|
| 476 |
-
file_path = os.path.join(root, filename)
|
| 477 |
-
add_file_to_dictionary(files, file_path)
|
| 478 |
-
|
| 479 |
-
return files
|
| 480 |
-
|
| 481 |
-
def add_file_to_dictionary(files, file_path):
|
| 482 |
-
"""Helper function to add a file to the files dictionary."""
|
| 483 |
-
filename = os.path.relpath(file_path, PROJECT_ROOT) # Get relative path
|
| 484 |
-
|
| 485 |
-
# Handle text and binary files
|
| 486 |
-
if filename.endswith((".py", ".txt", ".json", ".html", ".css", ".yml", ".yaml")):
|
| 487 |
-
with open(file_path, "r") as f:
|
| 488 |
-
files[filename] = f.read()
|
| 489 |
-
else:
|
| 490 |
-
with open(file_path, "rb") as f:
|
| 491 |
-
file_content = f.read()
|
| 492 |
-
files[filename] = base64.b64encode(file_content).decode("utf-8")
|
| 493 |
# Project Workspace Creation
|
| 494 |
st.subheader("Create a New Project")
|
| 495 |
project_name = st.text_input("Enter project name:")
|
|
@@ -514,8 +388,10 @@ def add_file_to_dictionary(files, file_path):
|
|
| 514 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
| 515 |
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
| 516 |
if st.button("Add Code"):
|
| 517 |
-
add_code_status = add_code_to_workspace(
|
| 518 |
-
|
|
|
|
|
|
|
| 519 |
st.success(add_code_status)
|
| 520 |
|
| 521 |
# Terminal Interface with Project Context
|
|
@@ -523,7 +399,8 @@ def add_file_to_dictionary(files, file_path):
|
|
| 523 |
terminal_input = st.text_input("Enter a command within the workspace:")
|
| 524 |
if st.button("Run Command"):
|
| 525 |
terminal_output = terminal_interface(terminal_input, project_name)
|
| 526 |
-
st.session_state.terminal_history.append(
|
|
|
|
| 527 |
st.code(terminal_output, language="bash")
|
| 528 |
|
| 529 |
# Chat Interface for Guidance
|
|
@@ -555,11 +432,14 @@ def add_file_to_dictionary(files, file_path):
|
|
| 555 |
|
| 556 |
# Chat with AI Agents
|
| 557 |
st.subheader("Chat with AI Agents")
|
| 558 |
-
selected_agent = st.selectbox(
|
|
|
|
| 559 |
agent_chat_input = st.text_area("Enter your message for the agent:")
|
| 560 |
if st.button("Send to Agent"):
|
| 561 |
-
agent_chat_response = chat_interface_with_agent(
|
| 562 |
-
|
|
|
|
|
|
|
| 563 |
st.write(f"{selected_agent}: {agent_chat_response}")
|
| 564 |
|
| 565 |
# Code Generation
|
|
@@ -567,7 +447,8 @@ def add_file_to_dictionary(files, file_path):
|
|
| 567 |
code_idea = st.text_input("Enter your code idea:")
|
| 568 |
|
| 569 |
# Model Selection Menu
|
| 570 |
-
selected_model = st.selectbox(
|
|
|
|
| 571 |
|
| 572 |
if st.button("Generate Code"):
|
| 573 |
generated_code = generate_code(code_idea, selected_model)
|
|
@@ -576,17 +457,10 @@ def add_file_to_dictionary(files, file_path):
|
|
| 576 |
# Automate Build Process
|
| 577 |
st.subheader("Automate Build Process")
|
| 578 |
if st.button("Automate"):
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
st.write("Next Step:")
|
| 584 |
-
st.write(next_step)
|
| 585 |
-
|
| 586 |
-
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
|
| 587 |
-
if st.button("Automate", args=(hf_token,)):
|
| 588 |
-
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
| 589 |
-
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
|
| 590 |
st.write("Autonomous Build Summary:")
|
| 591 |
st.write(summary)
|
| 592 |
st.write("Next Step:")
|
|
@@ -594,11 +468,7 @@ def add_file_to_dictionary(files, file_path):
|
|
| 594 |
|
| 595 |
# If everything went well, proceed to deploy the Space
|
| 596 |
if agent._hf_api and agent.has_valid_hf_token():
|
| 597 |
-
agent.deploy_built_space_to_hf()
|
| 598 |
# Use the hf_token to interact with the Hugging Face API
|
| 599 |
-
api = HfApi(token="
|
| 600 |
-
|
| 601 |
-
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
| 602 |
-
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 603 |
-
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 604 |
-
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import sys
|
| 3 |
+
import subprocess
|
|
|
|
| 4 |
import base64
|
| 5 |
+
import json
|
| 6 |
+
from io import StringIO
|
| 7 |
+
from typing import Dict, List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
import streamlit as st
|
| 10 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 11 |
+
from pylint import lint
|
|
|
|
| 12 |
|
| 13 |
+
# Add your Hugging Face API token here
|
| 14 |
+
hf_token = st.secrets["hf_token"]
|
|
|
|
| 15 |
|
| 16 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
| 17 |
+
if "chat_history" not in st.session_state:
|
| 18 |
st.session_state.chat_history = []
|
| 19 |
+
if "terminal_history" not in st.session_state:
|
| 20 |
st.session_state.terminal_history = []
|
| 21 |
+
if "workspace_projects" not in st.session_state:
|
| 22 |
st.session_state.workspace_projects = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Load pre-trained RAG retriever
|
| 25 |
+
rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base")
|
| 26 |
|
| 27 |
# Load pre-trained chat model
|
| 28 |
+
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 29 |
|
| 30 |
# Load tokenizer
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 32 |
|
| 33 |
+
def process_input(user_input: str) -> str:
|
| 34 |
# Input pipeline: Tokenize and preprocess user input
|
| 35 |
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
| 36 |
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
|
|
|
| 52 |
return refined_response
|
| 53 |
|
| 54 |
class AIAgent:
|
| 55 |
+
def __init__(self, name: str, description: str, skills: List[str], hf_api=None):
|
| 56 |
self.name = name
|
| 57 |
self.description = description
|
| 58 |
self.skills = skills
|
| 59 |
self._hf_api = hf_api
|
| 60 |
+
self._hf_token = hf_token
|
| 61 |
|
| 62 |
@property
|
| 63 |
def hf_api(self):
|
|
|
|
| 68 |
def has_valid_hf_token(self):
|
| 69 |
return bool(self._hf_token)
|
| 70 |
|
| 71 |
+
async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str):
|
|
|
|
| 72 |
# Continuation of previous methods
|
| 73 |
+
summary = "Chat History:\n" + "\n".join(chat_history)
|
| 74 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items())
|
| 75 |
|
| 76 |
# Analyze chat history and workspace projects to suggest actions
|
| 77 |
# Example:
|
|
|
|
| 105 |
|
| 106 |
# Generate GUI code for app.py if requested
|
| 107 |
if "create a gui" in summary.lower():
|
| 108 |
+
gui_code = generate_code(
|
| 109 |
+
"Create a simple GUI for this application", selected_model)
|
| 110 |
with open(app_file, "a") as f:
|
| 111 |
f.write(gui_code)
|
| 112 |
|
| 113 |
# Run the default build process
|
| 114 |
build_command = "pip install -r requirements.txt && python app.py"
|
| 115 |
try:
|
| 116 |
+
result = subprocess.run(
|
| 117 |
+
build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
| 118 |
st.write(f"Build Output:\n{result.stdout}")
|
| 119 |
if result.stderr:
|
| 120 |
st.error(f"Build Errors:\n{result.stderr}")
|
|
|
|
| 122 |
st.error(f"Build Error: {e}")
|
| 123 |
|
| 124 |
return summary, next_step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
def get_built_space_files() -> Dict[str, str]:
|
|
|
|
| 127 |
# Replace with your logic to gather the files you want to deploy
|
| 128 |
return {
|
| 129 |
"app.py": "# Your Streamlit app code here",
|
| 130 |
+
"requirements.txt": "streamlit\ntransformers"
|
| 131 |
# Add other files as needed
|
| 132 |
}
|
| 133 |
|
| 134 |
+
def save_agent_to_file(agent: AIAgent):
|
| 135 |
"""Saves the agent's prompt to a file."""
|
| 136 |
if not os.path.exists(AGENT_DIRECTORY):
|
| 137 |
os.makedirs(AGENT_DIRECTORY)
|
|
|
|
| 140 |
file.write(agent.create_agent_prompt())
|
| 141 |
st.session_state.available_agents.append(agent.name)
|
| 142 |
|
| 143 |
+
def load_agent_prompt(agent_name: str) -> str:
|
| 144 |
"""Loads an agent prompt from a file."""
|
| 145 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
| 146 |
if os.path.exists(file_path):
|
|
|
|
| 150 |
else:
|
| 151 |
return None
|
| 152 |
|
| 153 |
+
def create_agent_from_text(name: str, text: str) -> str:
|
| 154 |
+
skills = text.split("\n")
|
| 155 |
agent = AIAgent(name, "AI agent created from text input.", skills)
|
| 156 |
save_agent_to_file(agent)
|
| 157 |
return agent.create_agent_prompt()
|
| 158 |
|
| 159 |
+
def chat_interface_with_agent(input_text: str, agent_name: str) -> str:
|
| 160 |
agent_prompt = load_agent_prompt(agent_name)
|
| 161 |
if agent_prompt is None:
|
| 162 |
return f"Agent {agent_name} not found."
|
| 163 |
|
| 164 |
+
model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF"
|
| 165 |
try:
|
| 166 |
+
generator = pipeline("text-generation", model=model_name)
|
| 167 |
+
generator.tokenizer.pad_token = generator.tokenizer.eos_token
|
| 168 |
+
generated_response = generator(
|
| 169 |
+
f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"]
|
| 170 |
+
return generated_response
|
| 171 |
+
except Exception as e:
|
| 172 |
return f"Error loading model: {e}"
|
| 173 |
|
| 174 |
+
def terminal_interface(command: str, project_name: str = None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
if project_name:
|
| 176 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 177 |
if not os.path.exists(project_path):
|
| 178 |
return f"Project {project_name} does not exist."
|
| 179 |
+
result = subprocess.run(
|
| 180 |
+
command, shell=True, capture_output=True, text=True, cwd=project_path)
|
| 181 |
else:
|
| 182 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
| 183 |
return result.stdout
|
| 184 |
|
| 185 |
+
def code_editor_interface(code: str) -> str:
|
|
|
|
| 186 |
try:
|
| 187 |
formatted_code = black.format_str(code, mode=black.FileMode())
|
| 188 |
except black.NothingChanged:
|
|
|
|
| 200 |
|
| 201 |
return formatted_code, lint_message
|
| 202 |
|
| 203 |
+
def summarize_text(text: str) -> str:
|
|
|
|
| 204 |
summarizer = pipeline("summarization")
|
| 205 |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
| 206 |
return summary[0]['summary_text']
|
| 207 |
|
| 208 |
+
def sentiment_analysis(text: str) -> str:
|
|
|
|
| 209 |
analyzer = pipeline("sentiment-analysis")
|
| 210 |
result = analyzer(text)
|
| 211 |
return result[0]['label']
|
| 212 |
|
| 213 |
+
def translate_code(code: str, source_language: str, target_language: str) -> str:
|
|
|
|
| 214 |
# Use a Hugging Face translation model instead of OpenAI
|
| 215 |
+
# Example: English to Spanish
|
| 216 |
+
translator = pipeline(
|
| 217 |
+
"translation", model="bartowski/Codestral-22B-v0.1-GGUF")
|
| 218 |
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
| 219 |
return translated_code
|
| 220 |
|
| 221 |
+
def generate_code(code_idea: str, model_name: str) -> str:
|
| 222 |
"""Generates code using the selected model."""
|
| 223 |
try:
|
| 224 |
generator = pipeline('text-generation', model=model_name)
|
|
|
|
| 227 |
except Exception as e:
|
| 228 |
return f"Error generating code: {e}"
|
| 229 |
|
| 230 |
+
def chat_interface(input_text: str) -> str:
|
| 231 |
"""Handles general chat interactions with the user."""
|
| 232 |
# Use a Hugging Face chatbot model or your own logic
|
| 233 |
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
| 234 |
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
| 235 |
return response
|
| 236 |
|
| 237 |
+
def workspace_interface(project_name: str) -> str:
|
|
|
|
| 238 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 239 |
if not os.path.exists(project_path):
|
| 240 |
os.makedirs(project_path)
|
|
|
|
| 243 |
else:
|
| 244 |
return f"Project '{project_name}' already exists."
|
| 245 |
|
| 246 |
+
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
|
|
|
|
| 247 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 248 |
if not os.path.exists(project_path):
|
| 249 |
return f"Project '{project_name}' does not exist."
|
| 250 |
+
|
| 251 |
file_path = os.path.join(project_path, file_name)
|
| 252 |
with open(file_path, "w") as file:
|
| 253 |
file.write(code)
|
| 254 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
| 255 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
| 256 |
|
| 257 |
+
def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"):
|
| 258 |
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
| 259 |
headers = {"Authorization": f"Bearer {api.access_token}"}
|
| 260 |
payload = {
|
|
|
|
| 269 |
"content": contents,
|
| 270 |
"path": filename,
|
| 271 |
"encoding": "utf-8",
|
| 272 |
+
"mode": "overwrite"
|
| 273 |
}
|
| 274 |
payload["files"].append(data)
|
| 275 |
response = requests.post(url, json=payload, headers=headers)
|
|
|
|
| 284 |
|
| 285 |
# Sidebar navigation
|
| 286 |
st.sidebar.title("Navigation")
|
| 287 |
+
app_mode = st.sidebar.selectbox(
|
| 288 |
+
"Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
|
|
|
|
|
|
| 289 |
|
| 290 |
if app_mode == "AI Agent Creator":
|
| 291 |
# AI Agent Creator
|
|
|
|
| 316 |
terminal_input = st.text_input("Enter a command:")
|
| 317 |
if st.button("Run"):
|
| 318 |
terminal_output = terminal_interface(terminal_input)
|
| 319 |
+
st.session_state.terminal_history.append(
|
| 320 |
+
(terminal_input, terminal_output))
|
| 321 |
st.code(terminal_output, language="bash")
|
| 322 |
|
| 323 |
# Code Editor Interface
|
|
|
|
| 346 |
st.subheader("Translate Code")
|
| 347 |
code_to_translate = st.text_area("Enter code to translate:")
|
| 348 |
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
| 349 |
+
target_language = st.text_input(
|
| 350 |
+
"Enter target language (e.g., 'JavaScript'):")
|
| 351 |
if st.button("Translate Code"):
|
| 352 |
+
translated_code = translate_code(
|
| 353 |
+
code_to_translate, source_language, target_language)
|
| 354 |
st.code(translated_code, language=target_language.lower())
|
| 355 |
|
| 356 |
# Code Generation
|
|
|
|
| 363 |
elif app_mode == "Workspace Chat App":
|
| 364 |
# Workspace Chat App
|
| 365 |
st.header("Workspace Chat App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
# Project Workspace Creation
|
| 368 |
st.subheader("Create a New Project")
|
| 369 |
project_name = st.text_input("Enter project name:")
|
|
|
|
| 388 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
| 389 |
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
| 390 |
if st.button("Add Code"):
|
| 391 |
+
add_code_status = add_code_to_workspace(
|
| 392 |
+
project_name, code_to_add, file_name)
|
| 393 |
+
st.session_state.terminal_history.append(
|
| 394 |
+
(f"Add Code: {code_to_add}", add_code_status))
|
| 395 |
st.success(add_code_status)
|
| 396 |
|
| 397 |
# Terminal Interface with Project Context
|
|
|
|
| 399 |
terminal_input = st.text_input("Enter a command within the workspace:")
|
| 400 |
if st.button("Run Command"):
|
| 401 |
terminal_output = terminal_interface(terminal_input, project_name)
|
| 402 |
+
st.session_state.terminal_history.append(
|
| 403 |
+
(terminal_input, terminal_output))
|
| 404 |
st.code(terminal_output, language="bash")
|
| 405 |
|
| 406 |
# Chat Interface for Guidance
|
|
|
|
| 432 |
|
| 433 |
# Chat with AI Agents
|
| 434 |
st.subheader("Chat with AI Agents")
|
| 435 |
+
selected_agent = st.selectbox(
|
| 436 |
+
"Select an AI agent", st.session_state.available_agents)
|
| 437 |
agent_chat_input = st.text_area("Enter your message for the agent:")
|
| 438 |
if st.button("Send to Agent"):
|
| 439 |
+
agent_chat_response = chat_interface_with_agent(
|
| 440 |
+
agent_chat_input, selected_agent)
|
| 441 |
+
st.session_state.chat_history.append(
|
| 442 |
+
(agent_chat_input, agent_chat_response))
|
| 443 |
st.write(f"{selected_agent}: {agent_chat_response}")
|
| 444 |
|
| 445 |
# Code Generation
|
|
|
|
| 447 |
code_idea = st.text_input("Enter your code idea:")
|
| 448 |
|
| 449 |
# Model Selection Menu
|
| 450 |
+
selected_model = st.selectbox(
|
| 451 |
+
"Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS)
|
| 452 |
|
| 453 |
if st.button("Generate Code"):
|
| 454 |
generated_code = generate_code(code_idea, selected_model)
|
|
|
|
| 457 |
# Automate Build Process
|
| 458 |
st.subheader("Automate Build Process")
|
| 459 |
if st.button("Automate"):
|
| 460 |
+
# Load the agent without skills for now
|
| 461 |
+
agent = AIAgent(selected_agent, "", [])
|
| 462 |
+
summary, next_step = agent.autonomous_build(
|
| 463 |
+
st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
st.write("Autonomous Build Summary:")
|
| 465 |
st.write(summary)
|
| 466 |
st.write("Next Step:")
|
|
|
|
| 468 |
|
| 469 |
# If everything went well, proceed to deploy the Space
|
| 470 |
if agent._hf_api and agent.has_valid_hf_token():
|
| 471 |
+
agent.deploy_built_space_to_hf()
|
| 472 |
# Use the hf_token to interact with the Hugging Face API
|
| 473 |
+
api = HfApi(token="hf_token") # Function to create a Space on Hugging Face
|
| 474 |
+
create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())
|
|
|
|
|
|
|
|
|
|
|
|