Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,335 +1,251 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
import uuid
|
| 4 |
-
from huggingface_hub import InferenceClient, HfApi
|
| 5 |
-
from pypdf import PdfReader
|
| 6 |
-
from bs4 import BeautifulSoup
|
| 7 |
import datetime
|
| 8 |
import zipfile
|
| 9 |
-
import nltk
|
| 10 |
-
import nltk.data
|
| 11 |
-
import nltk.downloader # Import the downloader explicitly
|
| 12 |
import tempfile
|
| 13 |
import shutil
|
| 14 |
-
import
|
| 15 |
-
import
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
HF_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 26 |
-
HF_TOKEN = os.environ.get('HF_TOKEN')
|
| 27 |
-
if not HF_TOKEN:
|
| 28 |
-
raise EnvironmentError("HF_TOKEN is not set. Please export it as an environment variable.")
|
| 29 |
-
try:
|
| 30 |
-
client = InferenceClient(model=HF_MODEL, token=HF_TOKEN)
|
| 31 |
-
api = HfApi(token=HF_TOKEN)
|
| 32 |
-
log("Initialized Hugging Face client and API.")
|
| 33 |
-
except Exception as e:
|
| 34 |
-
log(f"Error initializing Hugging Face client: {e}")
|
| 35 |
-
exit(1)
|
| 36 |
-
|
| 37 |
-
REPO_NAME = "acecalisto3/tmp"
|
| 38 |
-
DATASET_URL = f"https://huggingface.co/datasets/{REPO_NAME}/raw/main/"
|
| 39 |
-
|
| 40 |
-
# Constants
|
| 41 |
-
MAX_TOKENS = 8192
|
| 42 |
-
|
| 43 |
-
# Utility Functions
|
| 44 |
-
def generate_session_key():
|
| 45 |
-
"""Generates a unique session key (conceptual for ephemeral session)."""
|
| 46 |
-
return secrets.token_hex(16)
|
| 47 |
-
|
| 48 |
-
def verify_checksum(data):
|
| 49 |
-
"""Generates a SHA-256 checksum of the data (conceptual for integrity)."""
|
| 50 |
-
return sha256(data.encode()).hexdigest()
|
| 51 |
-
|
| 52 |
-
def get_file_id_from_google_drive_url(url):
|
| 53 |
-
if "drive.google.com" in url and "file/d/" in url:
|
| 54 |
-
parts = url.split("/file/d/")
|
| 55 |
-
if len(parts) < 2:
|
| 56 |
-
return None
|
| 57 |
-
file_id = parts[1].split("/")[0].split("?")[0]
|
| 58 |
-
return file_id
|
| 59 |
-
return None
|
| 60 |
-
|
| 61 |
-
def download_google_drive_file(file_id, session_id):
|
| 62 |
-
"""Downloads a Google Drive file to a temporary session-specific directory."""
|
| 63 |
-
download_url = f"https://drive.google.com/uc?id={file_id}"
|
| 64 |
-
temp_session_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}")
|
| 65 |
-
os.makedirs(temp_session_dir, exist_ok=True)
|
| 66 |
-
try:
|
| 67 |
-
response = requests.get(download_url, stream=True)
|
| 68 |
-
response.raise_for_status()
|
| 69 |
-
content_disposition = response.headers.get('Content-Disposition')
|
| 70 |
-
if content_disposition:
|
| 71 |
-
filename = content_disposition.split("filename=")[1].strip('"')
|
| 72 |
-
else:
|
| 73 |
-
filename = f"file_{uuid.uuid4()}"
|
| 74 |
-
file_path = os.path.join(temp_session_dir, filename)
|
| 75 |
-
with open(file_path, "wb") as f:
|
| 76 |
-
for chunk in response.iter_content(chunk_size=8192):
|
| 77 |
-
f.write(chunk)
|
| 78 |
-
return file_path, temp_session_dir
|
| 79 |
-
except Exception as e:
|
| 80 |
-
log(f"Error downloading Google Drive file {file_id}: {e}")
|
| 81 |
-
# Clean up the session directory on error
|
| 82 |
-
if os.path.exists(temp_session_dir):
|
| 83 |
-
shutil.rmtree(temp_session_dir)
|
| 84 |
-
return None, None
|
| 85 |
-
|
| 86 |
-
def read_pdf(file_path):
|
| 87 |
-
try:
|
| 88 |
-
reader = PdfReader(file_path)
|
| 89 |
-
text = "\n".join(page.extract_text() for page in reader.pages)
|
| 90 |
-
return text
|
| 91 |
-
except Exception as e:
|
| 92 |
-
log(f"Error reading PDF {file_path}: {e}")
|
| 93 |
-
return ""
|
| 94 |
-
|
| 95 |
-
def read_txt(txt_path):
|
| 96 |
-
try:
|
| 97 |
-
with open(txt_path, "r", encoding="utf-8") as f:
|
| 98 |
-
return f.read()
|
| 99 |
-
except Exception as e:
|
| 100 |
-
log(f"Error reading TXT file {txt_path}: {e}")
|
| 101 |
-
return ""
|
| 102 |
-
|
| 103 |
-
def read_zip(zip_path, session_id):
|
| 104 |
-
"""Reads content from a ZIP file within the temporary session directory."""
|
| 105 |
-
extracted_data = []
|
| 106 |
-
temp_extract_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}_extract")
|
| 107 |
-
os.makedirs(temp_extract_dir, exist_ok=True)
|
| 108 |
-
try:
|
| 109 |
-
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 110 |
-
for file_info in zip_ref.infolist():
|
| 111 |
-
if file_info.filename.endswith((".txt", ".pdf")):
|
| 112 |
-
with zip_ref.open(file_info) as file:
|
| 113 |
-
content = file.read()
|
| 114 |
-
temp_file_path = os.path.join(temp_extract_dir, file_info.filename)
|
| 115 |
-
with open(temp_file_path, "wb") as temp_file:
|
| 116 |
-
temp_file.write(content)
|
| 117 |
-
if file_info.filename.endswith(".txt"):
|
| 118 |
-
extracted_data.append(read_txt(temp_file_path))
|
| 119 |
-
elif file_info.filename.endswith(".pdf"):
|
| 120 |
-
extracted_data.append(read_pdf(temp_file_path))
|
| 121 |
-
return "\n".join(extracted_data)
|
| 122 |
-
except Exception as e:
|
| 123 |
-
log(f"Error reading ZIP file {zip_path}: {e}")
|
| 124 |
-
return ""
|
| 125 |
-
finally:
|
| 126 |
-
shutil.rmtree(temp_extract_dir, ignore_errors=True)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def fetch_url(url, max_depth, session_id):
|
| 145 |
-
visited = set()
|
| 146 |
-
to_visit = [(url, 0)]
|
| 147 |
-
results = []
|
| 148 |
-
errors = []
|
| 149 |
-
headers = {
|
| 150 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36'
|
| 151 |
-
}
|
| 152 |
-
temp_session_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}")
|
| 153 |
-
os.makedirs(temp_session_dir, exist_ok=True)
|
| 154 |
-
try:
|
| 155 |
-
while to_visit:
|
| 156 |
-
current_url, depth = to_visit.pop(0)
|
| 157 |
-
if current_url in visited:
|
| 158 |
-
continue
|
| 159 |
-
if depth < max_depth:
|
| 160 |
-
visited.add(current_url)
|
| 161 |
-
# Check if it's a Google Drive file URL
|
| 162 |
-
if "drive.google.com/file/d/" in current_url:
|
| 163 |
-
file_id = get_file_id_from_google_drive_url(current_url)
|
| 164 |
-
if file_id:
|
| 165 |
-
file_path, temp_dir = download_google_drive_file(file_id, session_id)
|
| 166 |
-
if file_path:
|
| 167 |
-
file_ext = os.path.splitext(file_path)[1].lower()
|
| 168 |
-
if file_ext == ".pdf":
|
| 169 |
-
pdf_text = read_pdf(file_path)
|
| 170 |
-
results.append(pdf_text)
|
| 171 |
-
elif file_ext == ".txt":
|
| 172 |
-
txt_content = read_txt(file_path)
|
| 173 |
-
results.append(txt_content)
|
| 174 |
-
elif file_ext == ".zip":
|
| 175 |
-
zip_content = read_zip(file_path, session_id)
|
| 176 |
-
results.append(zip_content)
|
| 177 |
-
else:
|
| 178 |
-
errors.append(f"Unsupported file type for URL: {current_url}")
|
| 179 |
-
# Clean up the downloaded file, but keep the session dir for other files
|
| 180 |
-
if temp_dir and os.path.exists(file_path):
|
| 181 |
-
os.remove(file_path)
|
| 182 |
-
else:
|
| 183 |
-
errors.append(f"Failed to download file from URL: {current_url}")
|
| 184 |
-
else:
|
| 185 |
-
errors.append(f"Invalid Google Drive URL: {current_url}")
|
| 186 |
-
# Check if it's a Google Doc URL
|
| 187 |
-
elif "docs.google.com/document/d/" in current_url:
|
| 188 |
-
doc_content = fetch_google_doc(current_url)
|
| 189 |
-
if doc_content:
|
| 190 |
-
results.append(doc_content)
|
| 191 |
-
else:
|
| 192 |
-
errors.append(f"Failed to fetch Google Doc: {current_url}")
|
| 193 |
-
else:
|
| 194 |
-
try:
|
| 195 |
-
response = requests.get(current_url, headers=headers, timeout=10)
|
| 196 |
-
response.raise_for_status()
|
| 197 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
| 198 |
-
results.append(soup.get_text())
|
| 199 |
-
for link in soup.find_all("a", href=True):
|
| 200 |
-
absolute_url = requests.compat.urljoin(current_url, link.get('href'))
|
| 201 |
-
if absolute_url.startswith("http") and absolute_url not in visited:
|
| 202 |
-
to_visit.append((absolute_url, depth + 1))
|
| 203 |
-
# Optional: Introduce a delay between requests
|
| 204 |
-
# time.sleep(1)
|
| 205 |
-
except Exception as e:
|
| 206 |
-
log(f"Error fetching {current_url}: {e}")
|
| 207 |
-
errors.append(f"Error fetching {current_url}: {e}")
|
| 208 |
-
finally:
|
| 209 |
-
# Clean up the temporary session directory after processing URLs
|
| 210 |
-
shutil.rmtree(temp_session_dir, ignore_errors=True)
|
| 211 |
-
return "\n".join(results), "\n".join(errors)
|
| 212 |
-
|
| 213 |
-
def process_file(file, session_id):
|
| 214 |
-
"""Processes an uploaded file within the temporary session directory."""
|
| 215 |
-
temp_session_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}")
|
| 216 |
-
os.makedirs(temp_session_dir, exist_ok=True)
|
| 217 |
-
file_path = os.path.join(temp_session_dir, file.name)
|
| 218 |
-
try:
|
| 219 |
-
# Save the uploaded file to the temporary session directory
|
| 220 |
-
with open(file_path, "wb") as f:
|
| 221 |
-
f.write(file.read())
|
| 222 |
-
if file.name.endswith(".pdf"):
|
| 223 |
-
return read_pdf(file_path)
|
| 224 |
-
elif file.name.endswith(".txt"):
|
| 225 |
-
return read_txt(file_path)
|
| 226 |
-
elif file.name.endswith(".zip"):
|
| 227 |
-
return read_zip(file_path, session_id)
|
| 228 |
-
except Exception as e:
|
| 229 |
-
log(f"Error processing file {file.name}: {e}")
|
| 230 |
-
return ""
|
| 231 |
-
finally:
|
| 232 |
-
# The temporary session directory will be cleaned up after the workflow
|
| 233 |
-
pass
|
| 234 |
-
|
| 235 |
-
def chunk_text(text, max_chunk_size):
|
| 236 |
-
tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
|
| 237 |
-
sentences = tokenizer.tokenize(text)
|
| 238 |
-
chunks = []
|
| 239 |
-
current_chunk = ""
|
| 240 |
-
for sentence in sentences:
|
| 241 |
-
if len(current_chunk) + len(sentence) + 1 > max_chunk_size:
|
| 242 |
-
chunks.append(current_chunk.strip())
|
| 243 |
-
current_chunk = ""
|
| 244 |
-
current_chunk += sentence + " "
|
| 245 |
-
if current_chunk:
|
| 246 |
-
chunks.append(current_chunk.strip())
|
| 247 |
-
return chunks
|
| 248 |
-
|
| 249 |
-
def extract_dataset(data, instructions="Extract {history}", max_tokens=MAX_TOKENS):
|
| 250 |
-
extracted = []
|
| 251 |
-
chunks = chunk_text(data, max_chunk_size=20000) # Adjusted size
|
| 252 |
-
for i, chunk in enumerate(chunks):
|
| 253 |
try:
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
prompt=prompt,
|
| 257 |
-
max_new_tokens=max_tokens
|
| 258 |
-
)
|
| 259 |
-
extracted.append(response.choices[0].text)
|
| 260 |
except Exception as e:
|
| 261 |
-
log(f"Error
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
import gradio as gr # Ensure you import gradio
|
| 270 |
-
|
| 271 |
-
with gr.Blocks() as app:
|
| 272 |
-
session_id = gr.State(generate_session_key) # Unique session ID for each user
|
| 273 |
-
gr.Markdown(
|
| 274 |
-
"**Dataset Generator and Flash Chatbot**: Upload files, scrape data from URLs, or enter text to generate datasets and interact with a chatbot."
|
| 275 |
-
)
|
| 276 |
-
chatbot = gr.Chatbot(label="Flash Trained Chatbot")
|
| 277 |
-
command_selector = gr.Dropdown(
|
| 278 |
-
label="Select Command",
|
| 279 |
-
choices=["Scrape Data", "Extract Dataset", "Combine Datasets", "Train Chatbot"],
|
| 280 |
-
value="Scrape Data"
|
| 281 |
-
)
|
| 282 |
-
data_input = gr.Textbox(label="Input Text", placeholder="Enter text here.")
|
| 283 |
-
file_upload = gr.Files(label="Upload Files", file_types=[".pdf", ".txt", ".zip"])
|
| 284 |
-
url_input = gr.Textbox(label="URL")
|
| 285 |
-
depth_slider = gr.Slider(label="Crawl Depth", minimum=1, maximum=10, value=1)
|
| 286 |
-
output_json = gr.JSON(label="Output Dataset")
|
| 287 |
-
error_output = gr.Textbox(label="Error Log", interactive=False)
|
| 288 |
-
process_button = gr.Button("Process")
|
| 289 |
-
|
| 290 |
-
def process_workflow(session_id, command, data, files, url, depth):
|
| 291 |
-
datasets = []
|
| 292 |
-
errors = []
|
| 293 |
-
temp_session_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}")
|
| 294 |
-
os.makedirs(temp_session_dir, exist_ok=True)
|
| 295 |
try:
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
if files:
|
| 299 |
-
for
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
else:
|
| 304 |
-
errors.append(f"
|
| 305 |
-
|
| 306 |
-
url_data, fetch_errors = fetch_url(url, depth, session_id)
|
| 307 |
-
if url_data:
|
| 308 |
-
datasets.append(url_data)
|
| 309 |
-
else:
|
| 310 |
-
errors.append(f"Failed to fetch data from URL: {url}")
|
| 311 |
-
if fetch_errors:
|
| 312 |
-
errors.append(fetch_errors)
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
combined_data = combine_datasets(datasets)
|
| 319 |
-
return session_id, {"datasets": [combined_data]}, "\n".join(errors)
|
| 320 |
-
else:
|
| 321 |
-
return session_id, {"datasets": datasets}, "\n".join(errors)
|
| 322 |
except Exception as e:
|
| 323 |
-
|
| 324 |
-
return
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import requests
|
| 5 |
import uuid
|
|
|
|
|
|
|
|
|
|
| 6 |
import datetime
|
| 7 |
import zipfile
|
|
|
|
|
|
|
|
|
|
| 8 |
import tempfile
|
| 9 |
import shutil
|
| 10 |
+
import secrets
|
| 11 |
+
import time
|
| 12 |
+
import json
|
| 13 |
+
from typing import List, Tuple, Any, Dict
|
| 14 |
+
|
| 15 |
+
# Third-party libraries
|
| 16 |
+
import gradio as gr
|
| 17 |
+
from huggingface_hub import InferenceClient
|
| 18 |
+
from pypdf import PdfReader
|
| 19 |
+
from bs4 import BeautifulSoup
|
| 20 |
+
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Local imports from the enhanced prompt library
|
| 23 |
+
from agent_prompt import PromptLibrary, SystemAuditor
|
| 24 |
+
|
| 25 |
+
# --- CONFIGURATION ---
|
| 26 |
+
class Config:
|
| 27 |
+
"""Centralized configuration for the Maestro application."""
|
| 28 |
+
HF_MODEL = os.getenv("HF_MODEL", "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 29 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 30 |
+
VERBOSE = os.getenv("VERBOSE", "True").lower() == "true"
|
| 31 |
+
MAX_NEW_TOKENS_REPORT = 4096
|
| 32 |
+
MAX_NEW_TOKENS_CHAT = 1024
|
| 33 |
+
REQUESTS_TIMEOUT = 15
|
| 34 |
+
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
|
| 35 |
+
|
| 36 |
+
# --- UTILITIES ---
|
| 37 |
+
def log(message: str) -> None:
|
| 38 |
+
if Config.VERBOSE:
|
| 39 |
+
print(f"[LOG] {datetime.datetime.now(datetime.timezone.utc).isoformat()} - {message}")
|
| 40 |
+
|
| 41 |
+
class SessionManager:
|
| 42 |
+
"""A context manager for creating and cleaning up session-specific temporary directories."""
|
| 43 |
+
def __init__(self, session_id: str):
|
| 44 |
+
self.session_id = session_id
|
| 45 |
+
self.temp_dir = os.path.join(tempfile.gettempdir(), f"session_{session_id}")
|
| 46 |
+
|
| 47 |
+
def __enter__(self) -> str:
|
| 48 |
+
os.makedirs(self.temp_dir, exist_ok=True)
|
| 49 |
+
log(f"Session '{self.session_id}' started. Temp dir: {self.temp_dir}")
|
| 50 |
+
return self.temp_dir
|
| 51 |
+
|
| 52 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 53 |
+
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 54 |
+
log(f"Session '{self.session_id}' ended. Temp dir cleaned up.")
|
| 55 |
+
|
| 56 |
+
# --- CORE APPLICATION ENGINE ---
|
| 57 |
+
class MaestroEngine:
|
| 58 |
+
"""Handles all data processing and LLM interaction logic."""
|
| 59 |
+
def __init__(self):
|
| 60 |
+
self.client = InferenceClient(model=Config.HF_MODEL, token=Config.HF_TOKEN)
|
| 61 |
try:
|
| 62 |
+
nltk.data.find("tokenizers/punkt")
|
| 63 |
+
except LookupError:
|
| 64 |
+
log("Downloading NLTK 'punkt' tokenizer...")
|
| 65 |
+
nltk.download('punkt', quiet=True)
|
| 66 |
+
log("MaestroEngine initialized.")
|
| 67 |
+
|
| 68 |
+
def _read_pdf(self, file_path: str) -> str:
|
| 69 |
+
# (Implementation for reading PDF)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
try:
|
| 71 |
+
reader = PdfReader(file_path)
|
| 72 |
+
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
+
log(f"Error reading PDF {os.path.basename(file_path)}: {e}")
|
| 75 |
+
return f"Error reading PDF: {e}"
|
| 76 |
+
|
| 77 |
+
def _process_zip(self, zip_path: str, temp_dir: str) -> str:
|
| 78 |
+
# (Implementation for processing ZIP)
|
| 79 |
+
extracted_texts = []
|
| 80 |
+
extract_path = os.path.join(temp_dir, "zip_extract")
|
| 81 |
+
os.makedirs(extract_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
try:
|
| 83 |
+
with zipfile.ZipFile(zip_path, 'r') as zf:
|
| 84 |
+
for member in zf.infolist():
|
| 85 |
+
if member.filename.endswith('.pdf'):
|
| 86 |
+
zf.extract(member, extract_path)
|
| 87 |
+
extracted_texts.append(self._read_pdf(os.path.join(extract_path, member.filename)))
|
| 88 |
+
elif member.filename.endswith('.txt'):
|
| 89 |
+
extracted_texts.append(zf.read(member).decode('utf-8', errors='ignore'))
|
| 90 |
+
return "\n\n".join(extracted_texts)
|
| 91 |
+
except Exception as e:
|
| 92 |
+
log(f"Error processing ZIP {os.path.basename(zip_path)}: {e}")
|
| 93 |
+
return f"Error processing ZIP: {e}"
|
| 94 |
+
|
| 95 |
+
def process_data_sources(self, session_id: str, url: str, text: str, files: List[Any]) -> Tuple[str, List[str]]:
|
| 96 |
+
"""Orchestrates data ingestion from all provided sources."""
|
| 97 |
+
all_content, errors = [], []
|
| 98 |
+
with SessionManager(session_id) as temp_dir:
|
| 99 |
+
if url:
|
| 100 |
+
try:
|
| 101 |
+
response = requests.get(url, headers={'User-Agent': Config.USER_AGENT}, timeout=Config.REQUESTS_TIMEOUT)
|
| 102 |
+
response.raise_for_status()
|
| 103 |
+
all_content.append(BeautifulSoup(response.content, 'html.parser').get_text(separator="\n", strip=True))
|
| 104 |
+
except Exception as e:
|
| 105 |
+
errors.append(f"URL Fetch Error: {e}")
|
| 106 |
+
if text:
|
| 107 |
+
all_content.append(text)
|
| 108 |
if files:
|
| 109 |
+
for file_obj in files:
|
| 110 |
+
file_path = os.path.join(temp_dir, os.path.basename(file_obj.name))
|
| 111 |
+
with open(file_path, "wb") as f:
|
| 112 |
+
shutil.copyfileobj(file_obj, f)
|
| 113 |
+
ext = os.path.splitext(file_obj.name)[1].lower()
|
| 114 |
+
if ext == '.pdf':
|
| 115 |
+
all_content.append(self._read_pdf(file_path))
|
| 116 |
+
elif ext == '.txt':
|
| 117 |
+
all_content.append(open(file_path, 'r', encoding='utf-8').read())
|
| 118 |
+
elif ext == '.zip':
|
| 119 |
+
all_content.append(self._process_zip(file_path, temp_dir))
|
| 120 |
else:
|
| 121 |
+
errors.append(f"Unsupported file type: {file_obj.name}")
|
| 122 |
+
return "\n\n---\n\n".join(all_content), errors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
def _query_llm(self, prompt: str, max_tokens: int) -> str:
|
| 125 |
+
try:
|
| 126 |
+
response = self.client.text_generation(prompt, max_new_tokens=max_tokens, temperature=0.7, top_p=0.95)
|
| 127 |
+
return response.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
except Exception as e:
|
| 129 |
+
log(f"LLM query failed: {e}")
|
| 130 |
+
return f"Error communicating with the model: {e}"
|
| 131 |
+
|
| 132 |
+
def run_rag_query(self, query: str, context: str) -> str:
|
| 133 |
+
prompt = f"Context:\n---\n{context}\n---\nBased only on the context provided, answer the following question:\nQuestion: {query}"
|
| 134 |
+
return self._query_llm(prompt, Config.MAX_NEW_TOKENS_CHAT)
|
| 135 |
+
|
| 136 |
+
def generate_report(self, report_type: str, context: str, objective: str) -> str:
|
| 137 |
+
if report_type == "Narrative Prose Report":
|
| 138 |
+
prompt = PromptLibrary.NARRATIVE_PROSE_REPORT.format(
|
| 139 |
+
task_objective=objective,
|
| 140 |
+
knowledge_base=context
|
| 141 |
+
)
|
| 142 |
+
return self._query_llm(prompt, Config.MAX_NEW_TOKENS_REPORT)
|
| 143 |
+
elif report_type == "Technical JSON Report":
|
| 144 |
+
prompt = PromptLibrary.TECHNICAL_JSON_REPORT.format(
|
| 145 |
+
task_objective=objective,
|
| 146 |
+
baseline_knowledge="Previously established facts",
|
| 147 |
+
new_information=context
|
| 148 |
+
)
|
| 149 |
+
raw_response = self._query_llm(prompt, Config.MAX_NEW_TOKENS_REPORT)
|
| 150 |
+
# Clean up potential markdown code fences for JSON parsing
|
| 151 |
+
clean_json_str = raw_response.replace("```json", "").replace("```", "").strip()
|
| 152 |
+
try:
|
| 153 |
+
# Validate and reformat for pretty printing
|
| 154 |
+
return json.dumps(json.loads(clean_json_str), indent=2)
|
| 155 |
+
except json.JSONDecodeError:
|
| 156 |
+
log(f"Failed to parse LLM response as JSON. Raw response: {raw_response}")
|
| 157 |
+
return '{"error": "The model did not return valid JSON.", "raw_response": ' + json.dumps(raw_response) + '}'
|
| 158 |
+
return "Invalid report type selected."
|
| 159 |
+
|
| 160 |
+
# --- GRADIO APPLICATION ---
|
| 161 |
+
class GradioApp:
|
| 162 |
+
"""Manages the Gradio UI and application workflow."""
|
| 163 |
+
def __init__(self, engine: MaestroEngine):
|
| 164 |
+
self.engine = engine
|
| 165 |
+
self.app = self._build_ui()
|
| 166 |
+
|
| 167 |
+
def _build_ui(self) -> gr.Blocks:
|
| 168 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), title="Maestro AI Engine") as app:
|
| 169 |
+
# State management
|
| 170 |
+
session_id = gr.State(lambda: secrets.token_hex(16))
|
| 171 |
+
auditor = gr.State(lambda s_id: SystemAuditor(session_id=s_id), session_id)
|
| 172 |
+
processed_data = gr.State("")
|
| 173 |
+
|
| 174 |
+
gr.Markdown("# 🧠 Maestro: AI Data Engine & Synthesis Platform")
|
| 175 |
+
|
| 176 |
+
with gr.Tabs():
|
| 177 |
+
with gr.TabItem("① Data Ingestion"):
|
| 178 |
+
with gr.Row():
|
| 179 |
+
with gr.Column():
|
| 180 |
+
url_input = gr.Textbox(label="Scrape from URL")
|
| 181 |
+
text_input = gr.Textbox(label="Paste Text", lines=10)
|
| 182 |
+
file_upload = gr.Files(label="Upload Files (.pdf, .txt, .zip)", type="file")
|
| 183 |
+
process_button = gr.Button("🚀 Process All Sources", variant="primary")
|
| 184 |
+
ingestion_summary = gr.Textbox(label="Ingestion Summary", interactive=False)
|
| 185 |
+
error_log = gr.Textbox(label="Errors", interactive=False)
|
| 186 |
+
|
| 187 |
+
with gr.TabItem("② Reporting & Synthesis"):
|
| 188 |
+
report_objective = gr.Textbox(label="Report Objective", placeholder="e.g., 'Synthesize findings on AI in agriculture'")
|
| 189 |
+
report_type = gr.Dropdown(label="Select Report Type", choices=["Narrative Prose Report", "Technical JSON Report"])
|
| 190 |
+
generate_button = gr.Button("Generate Report", variant="primary")
|
| 191 |
+
with gr.Tabs():
|
| 192 |
+
with gr.TabItem("Narrative Output"):
|
| 193 |
+
report_output_md = gr.Markdown()
|
| 194 |
+
with gr.TabItem("JSON Output"):
|
| 195 |
+
report_output_json = gr.JSON()
|
| 196 |
+
|
| 197 |
+
with gr.TabItem("③ Direct Chat Q&A"):
|
| 198 |
+
chatbot = gr.Chatbot(label="Chat Interface", height=550)
|
| 199 |
+
msg_input = gr.Textbox(label="Your Question", placeholder="Ask a question about the processed data...")
|
| 200 |
+
msg_input.submit(self._chat_workflow, [msg_input, chatbot, processed_data], [msg_input, chatbot])
|
| 201 |
+
|
| 202 |
+
# --- Workflow Connections ---
|
| 203 |
+
process_button.click(self._ingest_workflow, [session_id, url_input, text_input, file_upload], [processed_data, ingestion_summary, error_log])
|
| 204 |
+
generate_button.click(self._reporting_workflow, [auditor, report_type, processed_data, report_objective], [report_output_md, report_output_json])
|
| 205 |
+
|
| 206 |
+
return app
|
| 207 |
+
|
| 208 |
+
def _ingest_workflow(self, s_id, url, text, files):
|
| 209 |
+
log(f"Starting ingestion for session {s_id}...")
|
| 210 |
+
data, errors = self.engine.process_data_sources(s_id, url, text, files)
|
| 211 |
+
summary = f"Processing complete. {len(data)} characters ingested. {len(errors)} errors encountered."
|
| 212 |
+
return data, summary, "\n".join(errors)
|
| 213 |
+
|
| 214 |
+
def _chat_workflow(self, message, history, context):
|
| 215 |
+
if not context:
|
| 216 |
+
history.append((message, "Error: No data has been ingested. Please process data in Tab 1 first."))
|
| 217 |
+
return "", history
|
| 218 |
+
response = self.engine.run_rag_query(message, context)
|
| 219 |
+
history.append((message, response))
|
| 220 |
+
return "", history
|
| 221 |
+
|
| 222 |
+
def _reporting_workflow(self, auditor_instance, r_type, context, objective):
|
| 223 |
+
if not context:
|
| 224 |
+
md_out = "### Error: No data has been ingested. Please process data in Tab 1 first."
|
| 225 |
+
return md_out, None
|
| 226 |
+
|
| 227 |
+
start_time = time.time()
|
| 228 |
+
response = self.engine.generate_report(r_type, context, objective)
|
| 229 |
+
latency = (time.time() - start_time) * 1000
|
| 230 |
+
|
| 231 |
+
log(auditor_instance.format_response_log(response, latency, 1, 0.95)) # Log the event
|
| 232 |
+
|
| 233 |
+
if r_type == "Narrative Prose Report":
|
| 234 |
+
return response, None
|
| 235 |
+
elif r_type == "Technical JSON Report":
|
| 236 |
+
# The engine already returns a JSON string or an error object
|
| 237 |
+
return None, json.loads(response)
|
| 238 |
+
|
| 239 |
+
def launch(self):
|
| 240 |
+
self.app.launch(debug=Config.VERBOSE)
|
| 241 |
+
|
| 242 |
+
# --- MAIN EXECUTION BLOCK ---
|
| 243 |
+
if __name__ == "__main__":
|
| 244 |
+
if not Config.HF_TOKEN:
|
| 245 |
+
print("FATAL: Hugging Face token (HF_TOKEN) not found in environment variables.")
|
| 246 |
+
print("Please set your token, e.g., `export HF_TOKEN='hf_...'`")
|
| 247 |
+
else:
|
| 248 |
+
log("Instantiating Maestro Engine and launching Gradio App...")
|
| 249 |
+
maestro_engine = MaestroEngine()
|
| 250 |
+
gradio_app = GradioApp(engine=maestro_engine)
|
| 251 |
+
gradio_app.launch()
|