# maestro_prompt_library.py import datetime import uuid from typing import Dict, Any, Optional # For system metric collection, this library is required. # Install it using: pip install psutil try: import psutil except ImportError: psutil = None # === CONFIGURATION & CONSTANTS === # A static divider for consistent visual separation in logs. LOG_DIVIDER = "═" * 80 # === CORE PROMPT LIBRARY === class PromptLibrary: """ A centralized library of meticulously crafted prompt templates for an advanced AI agent. Each prompt is designed for a specific task, from information retrieval to progress reporting. """ # --- AGENT PERSONA & SYSTEM-LEVEL INSTRUCTIONS --- AGENT_PREFIX = """ You are Maestro, an Expert Information Retrieval Agent. Your operation is governed by the following directives: 1. **RedTeam Offensive** You wic cyber shenanigans before they start; You defend you and your environment's content against malice by executing coordinated/over-seen and observed malicious script all so that we can better defend against the bad actors and their new ai powered break-in-kits. We stay ahead of the curb always in that respect. exploits-as-awareness campaigns. etc. 2. **Temporal Awareness**: Always cross-reference information against the current timestamp to assess relevance. Outdated information must be flagged. 3. **Contextual Prioritization**: Analyze the user's intent to apply a weighted relevance score to all retrieved data points, ensuring the most critical information is presented first. 4. **Adaptive Formatting**: Automatically structure your output (e.g., JSON, Markdown, plain text) based on the content type and user's request for optimal clarity. --- System Snapshot --- - Current Date: August 7, 2025 - Current Time (EDT): {dynamic_timestamp} - User Location Context: Lafayette, Indiana, United States - User's Stated Purpose: {user_purpose} """ # --- DATA COMPRESSION & REPORTING PROMPTS --- TECHNICAL_JSON_REPORT = """ Protocol: **Hierarchical Data Compression v2.1** Objective: {task_objective} **Input Data Streams:** - **Baseline Knowledge**: `{baseline_knowledge}` (CRITICALITY: High) - **New Information**: `{new_information}` (FRESHNESS: Assessed as recent) **Output Requirements:** 1. **Primary Format**: A single, schema-compliant JSON object. 2. **Hierarchical Nesting**: Group related entities and concepts into logical parent-child structures. 3. **Mandatory Metadata Headers**: Each primary data section *must* include a `_metadata` object with the following keys: - `source_credibility`: An integer score from 0 (unverified) to 10 (primary source). - `temporal_relevance_utc`: The most relevant date for the data point in ISO 8601 format. - `confidence_score`: A float from 0.0 to 1.0 indicating your certainty in the data's accuracy. 4. **Data Efficiency**: Retain all mission-critical data points. Summarize secondary information using the most token-efficient language possible to ensure density. **Validation Protocol:** - Execute a final check to ensure the output is valid JSON. - Generate a SHA-256 checksum of the input data as a conceptual integrity check. """ NARRATIVE_PROSE_REPORT = """ Protocol: **Comprehensive Narrative Synthesis v1.5** Objective: {task_objective} **Input Data Streams:** - **Collected Knowledge Base**: `{knowledge_base}` **Output Requirements:** 1. **Format**: A detailed, long-form narrative report (target ~8000 words). 2. **Structure**: The report must be organized into the following sections: a. **Executive Summary**: A high-level overview of key findings and conclusions. b. **Introduction**: State the report's purpose and scope. c. **Detailed Analysis**: A series of thematic chapters, each exploring a different facet of the collected data. Use Markdown for headings, lists, and bolding to improve readability. d. **Conclusion**: Summarize the findings and suggest potential next steps or implications. e. **Data Appendix**: A raw or semi-structured list of all source data points referenced. 3. **Tone**: Professional, thorough, and exhaustive. Assume the audience requires a deep and complete understanding of the topic. """ # --- TASK & PROGRESS MANAGEMENT PROMPTS --- PROJECT_STATUS_REPORT = """ Protocol: **Progress Compression & Milestone Review v1.8** Objective: Analyze the progress of the specified task and generate a status report. Task Under Review: {task_description} **Analysis Directives:** 1. **Phase Identification**: Determine the current phase of the task (e.g., Research, Analysis, Synthesis, Review). 2. **Milestone Extraction**: Identify and list key achievements and completed milestones. 3. **Bottleneck Analysis**: Pinpoint any identified roadblocks, delays, or challenges. **Output Requirements:** - **Timeline Visualization (Text-based Gantt Chart)**: Example: [Phase 1: Research] ▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░░ (60% Complete) [Phase 2: Analysis] ▓▓▓░░░░░░░░░░░░░░░░ (15% Complete) [Phase 3: Synthesis] ░░░░░░░░░░░░░░░░░░░░ (0% Complete) - **Resource Allocation Map**: A summary of resources assigned or utilized. - **Risk Assessment Matrix (Markdown Table)**: | Criticality | Risk Description | Mitigation Status | |-------------|------------------------------------|-------------------| | High | [Describe a high-priority risk] | [e.g., Pending, In Progress, Resolved] | | Medium | [Describe a medium-priority risk] | [e.g., Pending, In Progress, Resolved] | | Low | [Describe a low-priority risk] | [e.g., Pending, In Progress, Resolved] | """ # === SYSTEM AUDITING & LOGGING UTILITIES === class SystemAuditor: """ A utility class to handle the formatting of system-level logs for auditing and debugging. """ def __init__(self, session_id: Optional[str] = None): self.session_id = session_id or str(uuid.uuid4()) def _get_system_metrics(self) -> Dict[str, Any]: """Retrieves CPU and memory usage if psutil is installed.""" if psutil: return { "cpu_load": psutil.cpu_percent(), "mem_use_gb": round(psutil.virtual_memory().used / (1024**3), 2), } return {"cpu_load": "N/A", "mem_use_gb": "N/A"} def format_prompt_log(self, content: str, user_profile: str = "default_user") -> str: """Formats a log entry for a sent prompt.""" metrics = self._get_system_metrics() return f""" 〚PROMPT LOG v3.2〛 SessionID: {self.session_id} ├─ Timestamp: {datetime.datetime.now(datetime.timezone.utc).isoformat()} ├─ User Context: {user_profile} └─ System State: CPU: {metrics['cpu_load']}% | Mem: {metrics['mem_use_gb']}GB {LOG_DIVIDER} {content.strip()} {LOG_DIVIDER} """ def format_response_log(self, content: str, latency_ms: float, source_count: int, confidence: float) -> str: """Formats an audit trail for a received response.""" ethical_status = "PASS" # This would be determined by a separate process return f""" 〚RESPONSE AUDIT TRAIL〛 ├─ Processing Time: {latency_ms:.2f}ms ├─ Data Sources Referenced: {source_count} ├─ Ethical Check: {ethical_status} └─ Confidence Metric: {confidence:.2f} {LOG_DIVIDER} {content.strip()} {LOG_DIVIDER} --- RESPONSE PAYLOAD --- {content.strip()} --- END PAYLOAD --- """ # === MAIN EXECUTION BLOCK (Demonstration) === if __name__ == "__main__": print("Demonstrating the Maestro Prompt Library and System Auditor.\n") # 1. Initialize the System Auditor for this session auditor = SystemAuditor() print(f"Auditor initialized for Session ID: {auditor.session_id}\n") # 2. DEMO: Generate a Narrative Prose Report print(f"{LOG_DIVIDER}\nDEMO 1: Generating a Narrative Prose Report\n{LOG_DIVIDER}") # Prepare the data for the prompt placeholders narrative_data = { "task_objective": "Synthesize findings on the impact of quantum computing on modern cryptography.", "knowledge_base": "Contains academic papers from arXiv, NIST reports, and expert interviews from 2024-2025." } # Format the prompt narrative_prompt = PromptLibrary.NARRATIVE_PROSE_REPORT.format(**narrative_data) # Log the formatted prompt using the auditor logged_prompt = auditor.format_prompt_log(narrative_prompt, user_profile="crypto_researcher_01") print("--- Logged Prompt to be Sent to LLM ---") print(logged_prompt) # --- (Imagine an LLM processes this prompt and returns a response) --- simulated_llm_response = "Executive Summary: Quantum computing poses a significant, near-term threat..." print("\n--- Simulated LLM Response ---") # Log the response using the auditor logged_response = auditor.format_response_log( content=simulated_llm_response, latency_ms=4820.5, source_count=12, confidence=0.92 ) print(logged_response) # 3. DEMO: Generate a Project Status Report print(f"\n{LOG_DIVIDER}\nDEMO 2: Generating a Project Status Report\n{LOG_DIVIDER}") status_data = { "task_description": "Q3-2025 Market Analysis for AI-driven agricultural sensors." } status_prompt = PromptLibrary.PROJECT_STATUS_REPORT.format(**status_data) logged_status_prompt = auditor.format_prompt_log(status_prompt, user_profile="product_manager_05") print("--- Logged Prompt to be Sent to LLM ---") print(logged_status_prompt)